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Abstract

Solving partial differential equations (PDEs) using analytical techniques is intractable for all but

the simplest problems. Many computational approaches to approximate solutions to PDEs yield

large systems of linear equations. Algorithms known as linear solvers then compute an approximate

solution to the linear system.

Multigrid methods are one class of linear solver and find an approximate solution to a linear

system through two complementary processes: relaxation and coarse-grid correction. Relaxation

cheaply annihilates portions of error from the approximate solution, while coarse-grid correction

constructs a lower dimensional problem to remove error remaining after relaxation.

In algebraic multigrid (AMG), the lower dimensional space is constructed by coarse-grid selection

algorithms. In this thesis, an introduction and study of independent set-based parallel coarse-grid

selection algorithms is presented in detail, following a review of algebraic multigrid. The behavior

of the Cleary-Luby-Jones-Plassmann (CLJP) algorithm is analyzed and modifications to the ini-

tialization phase of CLJP are recommended, resulting in the CLJP in Color (CLJP-c) algorithm,

which achieves large performance gains over CLJP for problems on uniform grids. CLJP-c is then

extended to the Parallel Modified Independent Set (PMIS) coarse-grid selection algorithm producing

the PMIS-c1 and PMIS-c2 algorithms. Experimental results are provided for six problems run with

a large collection of independent set-based coarsening algorithms.

The experimental results motivate the design of new coarsening algorithms to improve the per-

formance of coarse-grid selection itself. A new algorithm labeled Bucket Sorted Independent Sets

(BSIS) is developed and contributes two major advances. First, the cost of selecting independent

sets while coarsening is substantially less expensive, with experiments demonstrating 23% savings

over CLJP-c. Second, theory is developed proving that all generalized forms of the coarsening algo-

rithms studied in this thesis using the same selection and update parameters choose identical coarse

grids, given the same initial weights. The theory is powerful because it provides insight and enables

the development of more efficient algorithms without affecting convergence properties.
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Chapter 1

Introduction

Many phenomena in science and engineering are modeled mathematically with partial differential

equations (PDEs). Solving a PDE analytically is often intractable, and alternative methods, such

as numerical approximation, are needed. A discretization method, such as finite differences or finite

elements, is used to approximate the original problem at unknowns, typically on a mesh. This new

problem takes the form of a linear system

Ax = b, (1.1)

where A is an n× n matrix.

For finite differences and finite element methods using local support basis functions, A is sparse.

That is, A contains few nonzeros, and if the mesh is refined and the problem rediscretized, the

number of unknowns increases while the number of nonzeros per row in A remains nearly constant.

If, on the other hand, finite elements with global support basis functions are used, A is usually

dense.

Two broad groups of linear solution methods exist for solving (1.1): direct and iterative. Direct

methods include Gaussian Elimination methods such as LU factorization, Cholesky factorization,

multifrontal methods, and others. Direct methods are attractive when there is more than one right-

hand side, b, because the factorization need only be computed once and is reusable. Assuming the

system is nonsingular (and symmetric positive definite in the case of Cholesky) direct methods have

the advantage that solution time is insensitive to the conditioning of the matrix. These methods,

however, typically scale more poorly than iterative methods and are difficult to parallelize.

Unlike direct methods, iterative methods produce a sequence of approximate solutions:

xk+1 = xk + αkdk, (1.2)

where xk is the approximate solution in the kth iteration and αkdk is an update vector that removes
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components of the error from xk. Sensible iterative methods use information about the system

matrix when computing αkdk and yield a small cost per iteration compared to the cost of factoring

the matrix with a direct method.

A popular class of iterative methods is the Krylov subspace methods, including the conjugate

gradient (CG) method [38] and the generalized minimum residual (GMRES) method [50]. Krylov

methods construct approximations from an increasingly larger space associated with A (i.e, the

Krylov subspace). In each iteration k, αkdk is the vector in the Krylov subspace that minimizes the

error or residual of the next approximate solution with respect to some norm.

Krylov methods are sensitive to the condition number of A, and preconditioning is often necessary

for an effective iterative process. Preconditioners come in many forms, such as approximate fac-

torizations (e.g., ILU [49]), approximate inverse preconditioners (e.g., SPAI [5]), and other iterative

methods (e.g., Jacobi, SOR).

Another class of iterative solvers and preconditioning techniques is multigrid methods [14, 55].

Multigrid creates a hierarchy of linear systems, whereby the original problem is on the fine grid, and

other levels in the hierarchy are coarse grids smaller in size. The method removes part of the error

on each level of the hierarchy and relies on coarser levels to annihilate remaining error.

Within multigrid methods two broad classes exist: geometric multigrid and algebraic multigrid

(AMG). Geometric multigrid is restricted to problems on structured grids for which coarse levels

are implicitly defined. Multigrid solvers are extended to problems on unstructured meshes by alge-

braic multigrid, which defines coarse grids explicitly using coarse-grid selection algorithms. AMG

algebraically constructs the operators used to transfer information between levels in the grid hierar-

chy. These components are manufactured in the AMG setup phase and have a large impact on the

effectiveness of the AMG solve phase.

An appealing feature of multigrid methods is that they converge in O(n) time (i.e., independently

of problem size) for a number of problems. This potential for optimality mixed with the potential for

parallel implementation makes AMG an attractive algorithm to solve large-scale problems. Realizing

reasonable scalability, however, implies both the solve phase and the setup phase must run efficiently.

Iterative methods parallelize more naturally than direct solvers, making them well-suited for

solving very large, sparse linear systems. Using distributed memory multiprocessors as a compu-

tational platform presents a number of challenges, and the need to overcome problems of scale

have continued to increase dramatically during the period in which this research was conducted.

Table 1.1 lists several powerful machines when the author began and finished graduate studies.
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Name (Location) Rank (Date) Nodes Procs (per Node) Memory Peak

ASCI White (LLNL) 1 (11/2000) 512 8,192 (16) 16GB/node 12 Tflops
Red Storm (Sandia) 2 (11/2006) 12,960 25,920 (2) 3GB/node 124 Tflops
BlueGene/L (LLNL) 1 (11/2006) 65,536 131,072 (2) 512MB/node 367 Tflops

Table 1.1: Powerful computers at the beginning and end of the author’s graduate education.

While computational power continues to increase (the first petaflops machine is expected in late

2008), the number of nodes and processors is also increasing. This trend increases the amount of

communication in large parallel jobs and motivates the need for scalable parallel implementations.

Vertices on the fine grid in AMG typically depend only on nearby vertices and most reside

on the same processor. On coarse grids, however, neighboring vertices tend to be further away.

The trend continues on the coarsest grids where vertices that are separated by large distances on

the fine level become neighbors. On parallel machines, this phenomenon is manifest by processors

communicating with ever more “distant” processors. In a complete multigrid cycle, a processor has

data dependencies with many more processors than it does on the fine level, so the changes seen in

parallel architectures significantly impact AMG.

1.1 Overview of Ideas

This thesis focuses on and contributes to the study of parallel coarse-grid selection algorithms

for AMG. These contributions follow fewer than eight years after the publication of the source

of contemporary independent set-based parallel coarse-grid selection algorithms: the Cleary-Luby-

Jones-Plassmann (CLJP) algorithm. In total, six new algorithms are developed in this thesis.

The algorithms this thesis develops improve the efficiency and effectiveness of their predecessors.

Chapter 4 explores issues related to memory consumption and the convergence properties of AMG,

which relates to the efficiency of the AMG solve phase. Following a study of performance of CLJP on

structured grids, improvements are suggested and implemented. The resulting algorithm, CLJP-c,

employs graph coloring algorithms to control coarse-grid structure and leads to significant improve-

ments for structured problems. These ideas are applied to the Parallel Modified Independent Set

(PMIS) coarsening algorithm to produce two additional algorithms.

Many coarse-grid selection algorithms utilize the concept of strength of connection to build coarse

grids that accurately represent smooth error. In some situations, classical strength of connection

does not provide accurate information. A different method called compatible relaxation produces

3



coarse grids guaranteed to represent smooth error accurately. Two parallel compatible relaxation

algorithms using concepts from earlier chapters are examined and implemented in Chapter 6.

This research and the research of others has produced a large and growing field of coarsening

algorithms. These algorithms are introduced in several publications and are, in many cases, not

tested against one another. Providing a single forum for all of the algorithms, this thesis contains a

wealth of experiments and data examining the performance of many parallel independent set-based

coarsening algorithms. This represents the largest set of coarsening algorithms tested simultaneously.

In Chapter 5, attention turns to the design and efficiency of coarsening algorithms themselves.

Coarse-grid selection algorithms contain routines for searching a graph to identify new coarse-grid

points. The weight initialization in CLJP and PMIS forces a brute force search, which involves

large numbers of comparisons between vertex weights. The algorithms using graph coloring have

a theoretical advantage in terms of the search methods available. An algorithm called Bucket

Sorted Independent Sets (BSIS) is developed to use a bucket algorithm for sorting and identifying

new coarse points without requiring comparisons between vertex weights. This novel application

of comparison-free sorting produces a coarsening algorithm with much lower search costs. BSIS

is the first coarse-grid selection algorithm developed with the explicit goal of reducing the cost of

coarsening. In addition to presenting the new algorithm, theory is developed to prove that changes

made from CLJP-c to BSIS do not affect the selected coarse grid.

1.2 Organization

The contents of this thesis are the union of several sources including three papers [2, 3], one which

is not yet submitted for publication, and also new text. Material has been drawn from the author’s

Masters thesis [1] and resides primarily in Appendices A and B.

Algebraic multigrid and related concepts are introduced in Chapter 2. Chapter 3 focuses on

coarse-grid selection. Strength of connection is revisited and the building blocks for independent set-

based coarse-grid selection are outlined. Heuristics coarse-grid selection uses are introduced, followed

by associated coarse-grid selection algorithms, such as the CLJP algorithm. In Chapter 4, the

behavior of CLJP on structured grids is studied in depth, and the observations made are employed

in the design of a new algorithm based on CLJP. This algorithm, CLJP-c, improves the performance

of CLJP on structured grids, and a similar idea is applied to the PMIS algorithm to produce two

additional algorithms: PMIS-c1 and PMIS-c2.
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While the focus in Chapter 4 is on improving convergence properties of AMG through coarsening

algorithm design, the attention in Chapter 5 is on the efficiency of coarse-grid selection itself. This

study results in the BSIS algorithm. BSIS includes an independent set selection search that operates

without comparing vertex weights, leading to significant decreases in the overall cost of coarse-grid

selection.

Chapter 6 examines a different type of coarse-grid selection called compatible relaxation (CR).

Parallel implementations are developed and the experiments presented demonstrate the promise of

CR methods. Chapter 7 concludes the thesis by reiterating the major contributions of this research

and includes a discussion for future directions in the study of parallel AMG setup phase algorithms.

Additional material is included in three appendices following Chapter 7. Appendix A contains

an introduction of geometric multigrid. It is possible to predict the performance of geometric

multigrid on various problems using local Fourier analysis. Appendix B introduces the Fourier

analysis technique. The experiments in Chapters 3 through 6 produce abundant amounts of data.

The corresponding plots visualize a limited selection of the data and do not provide information on

other factors that are interesting to consider when studying coarse-grid selection. Additional data

produced by the experiments is presented in tabular form in Appendix C.
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Chapter 2

Algebraic Multigrid

Multigrid methods are versatile and applicable to a variety of problems, such as linear and nonlinear

systems, optimization, and preconditioning, to name a few. The first multigrid methods were

geometric multigrid methods [30, 4, 7]. Geometric multigrid depends on a predefined hierarchy of

grids and operators to transfer information between levels. A grid is related to neighboring levels by

containing a subset or superset of the grid points of its neighbors. The original problem is defined

on the fine grid. All other grids in the hierarchy are coarse grids. A common type of coarsening for

geometric multigrid is h→ 2h coarsening and is illustrated in Figure 2.1.

Algebraic multigrid (AMG) [48, 9, 53, 14] was developed to provide flexibility to solve unstruc-

tured problems and anisotropic problems with multigrid. It generalizes the concepts of geometric

multigrid and uses a coarse-grid selection algorithm, rather than depending on a predefined coarse-

grid hierarchy.

AMG gained popularity due to its efficiency in solving certain classes of large, sparse linear

systems and has been shown to converge independently of problem size for a number of problems [19,

3]. Due to this potential for optimality, AMG is an attractive algorithm for solving large-scale

problems in parallel. However, to realize reasonable scalability in AMG, all components of the

method must run well in parallel.

The terminology used for AMG is based on geometric multigrid terminology. Grid, grid point,

smoother, and smooth error are commonly used terms used in AMG. Physical counterparts, however,

do not exist. For example, algebraically smooth error in AMG is not necessarily geometrically

smooth. Smoothness is identified through relaxation and the linear system.

2.1 Basic Concepts

Multigrid utilizes two complementary processes to iteratively eliminate error in an approximate

solution to a linear system Ax = b: relaxation (or smoothing) and coarse-grid correction.
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Figure 2.1: Geometric multigrid coarsening on the unit square. In h → 2h coarsening, the grid
spacing is halved.

2.1.1 Relaxation

On each level in the hierarchy, multigrid applies an iterative method to quickly annihilate certain

components of the error. This process is called relaxation. Many relaxation schemes are stationary

iterative methods, which are applicable as solvers, but while they remove some error quickly, other

components of the error are largely unaffected. Furthermore, for some methods, convergence is only

guaranteed under restrictive conditions.

The most popular stationary iterative methods are based on a matrix splitting of the form

A = M −N . The method is expressed as

xk+1 = M−1Nxk + M−1b. (2.1)

Equation (2.1) is often rewritten to include A:

xk+1 = (I −M−1A)xk + M−1b. (2.2)

By defining the smoothing operator S = (I −M−1A) and c = M−1b, (2.1) simplifies to

xk+1 = Sxk + c. (2.3)

Multiple iterations are expressible as a stationary iterative method. For example, ν applications

of the smoother is expressed as

xk+ν = Sνxk + c̃, (2.4)
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Figure 2.2: Two-grid cycle.

where c̃ = (Sν−1 + Sν−2 + · · ·+ S + I)c.

2.1.2 Coarse-Grid Correction

Assume Ax = b has been smoothed, yielding the approximate solution x̂, and define the residual as

r = b − Ax̂. Also, define the error, e = x∗ − x̂, where x∗ is the true solution. The error and the

residual are related by the defect equation,

Ae = r. (2.5)

These equations form the basis of iterative refinement. Solving (2.5) gives an update that leads

to the exact solution since x∗ = x̂+e. The cost of solving (2.5), however, is equivalent to solving the

original system. Multigrid seeks an approximation to e by transferring the residual onto the coarse

grid through a method called restriction. The defect equation is solved on the coarse grid for eH ,

and eH is transferred back to the fine grid through interpolation. Finally, the solution is refined by

coarse-grid correction: x = x̂ + e.

This process is known as the two-grid cycle and is illustrated in Figure 2.2. For clarity, fine-level

vectors may retain a subscript h, while coarse level entities are denoted by H . The two-grid cycle

is the most basic multigrid scheme because it utilizes a single coarse grid. Despite its simplicity, it

contains the basic ideas of more complicated cycles.
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Figure 2.3: Smooth error.

2.2 Smooth Error

When a relaxation scheme begins to stall, the error that remains is considered smooth error. Geo-

metric multigrid requires this error to be locally smooth smooth (see Figure 2.3(a)). This property

must be satisfied by selecting an appropriate relaxation scheme. In algebraic multigrid, smooth

error does not necessarily satisfy the same conditions of geometric smoothness (see Figure 2.3(b)).

The smooth error in both cases is, however, the result of the relaxation scheme stalling.

By examining relaxation further, insight is gained into the nature of smooth error. Starting

from (2.1), error propagation through the method is expressed as:

x∗ − xk+1 = (I −M−1A)x∗ + M−1b−
(

(I −M−1A)xk + M−1b
)

, (2.6)

ek+1 = (I −M−1A)(x∗ − xk), (2.7)

ek+1 = (I −M−1A)ek. (2.8)

Smooth error, therefore, satisfies e ≈ (I −M−1A)e. This expression is true when M−1Ae ≈ 0.

More specifically, for methods such as weighted Jacobi or Gauss-Seidel the smooth error expres-

sion is reduced, through additional analysis, to

Ae ≈ 0, (2.9)

implying that smooth error is composed of eigenvectors whose eigenvalues are close to zero (i.e. are

near-nullspace). Additionally, it states that smooth error has a small residual.
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2.3 AMG Phases

Algebraic multigrid algorithms execute in two phases: the setup phase and the solve phase. The

AMG setup phase is responsible for selecting coarse grids, building prolongation and restriction

operators, and constructing the coarse-level operators. The solve phase uses these products and

implements a multigrid cycle using relaxation, restriction, and prolongation.

2.3.1 Setup Phase

In geometric multigrid, the coarse-grid hierarchy is fixed and available since the problem is struc-

tured. A natural grid hierarchy is not available to AMG since there is no assumption regarding

structured grids. The purpose of the setup phase is to generate coarse grids and transfer opera-

tors, which are available directly to geometric multigrid for basic problems. It is noteworthy that

geometric multigrid may also require an expensive setup phase for more complicated problems.

Coarse-Grid Selection

Coarse-grid selection is the processes of creating the degrees of freedom of a coarse-level problem.

Classical forms of AMG use a subset of the fine-level unknowns as the coarse-level unknowns. This

is called a C/F splitting, where C-points are variables that exist on both the fine and coarse levels

and F -points are variables only on the fine level. This thesis studies algorithms used to select a

C/F splitting in depth. Another form of algebraic multigrid known as smoothed aggregation [25, 13]

forms aggregates of fine-level unknowns. These aggregates become coarse-level unknowns.

All AMG algorithms select coarse grids to accurately represent smooth error, to be suitable for

accurately interpolating vectors from the coarse grid to the fine grid, and to be significantly smaller

than the fine grid. It is easy to satisfy the first two properties by selecting a large coarse grid. Such

a strategy, however, leads to an expensive coarse-grid problem.

These requirements are typically satisfied with a set of heuristics that use the strength of connec-

tion between coupled degrees of freedom. The classical strength of connection measure is based on

the magnitude of off-diagonal entries in A. The set of unknowns that unknown i strongly depends

upon is defined as

Si =

{

j : i 6= j and |aij | ≥ θ max
k 6=i
|aik|

}

, (2.10)

where aij is the entry in row i, column j of matrix A and 0 < θ ≤ 1. Often, θ is 0.25. The set of

unknowns that i strongly influences, denoted ST
i , is defined as the set of unknowns that strongly
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depend on i:

ST
i = {j : i ∈ Sj}. (2.11)

The sets Si and ST
i directly correspond to the nonzero entries in the strength matrix S. Each

nonzero in S corresponds to a strong connection between unknowns, where an entry in the strength

matrix is defined as

Sij =











1 if i 6= j and |aij | ≥ θ maxk 6=i |aik|,

0 otherwise.
(2.12)

This strength of connection measure is used in combination with two heuristics to define a valid

coarse grid. These heuristics are as follows:

H1: For each unknown j that strongly influences F -point i, j is either a C-point or strongly depends

on a C-point k that also strongly influences i.

H2: The set of C-points needs to form a maximal independent set in the reduced graph of S such

that no C-point strongly depends on another C-point.

Note that heuristics H1 and H2 cannot generally be satisfied simultaneously. H1 is required by the

classical AMG interpolation scheme, so it must be satisfied. H2, on the other hand, is used to guide

the selection of coarse grids with few C-points.

Different heuristics exist and are used by other methods. See Chapter 3 for details of alternative

heuristics and the algorithms that utilize them.

Transfer Operator Construction

Prolongation operators transfer vectors from coarse levels to finer levels: PeH = eh. Construction

of P is algebraically based on entries in A and the C/F splitting is computed by coarse-grid selec-

tion. During prolongator construction, the nonzero entries in prolongation operator matrix P are

determined. These nonzero entries correspond to weights w in

Pei =











ei if i ∈ C,

∑

j∈Ci
wijej if i ∈ F.

(2.13)

It was demonstrated in Section 2.2 that smooth error corresponds to a relatively small residual.
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In terms of the residual of row i in A, this is expressed as

aiiei +
∑

j∈Si

aijej ≈ 0.

Therefore, smooth error at unknown i is approximated using the error at the strongly influencing

neighbors of i:

aiiei ≈ −
∑

j∈Si

aijej . (2.14)

Only C-points provide information in direct interpolation, so strongly connected F -points have

no influence on the result of interpolation for i. Standard interpolation, on the other hand, includes

information from strongly connected F -points by interpolating through mutual C-points. H1 ensures

each pair of strongly connected F -points share at least one common strongly influencing C-point,

yielding a well-defined interpolation procedure.

In standard interpolation, any j with aij 6= 0 is placed into one of three three groups: the

set of strongly connected C-points, called the coarse interpolatory set, Ci, of i, the set of strongly

connected F -points, Ds
i , and the set of weakly connected F - and C-points, Dw

i . Rewriting (2.14) in

terms of these three sets yields

aiiei ≈ −





∑

j∈Ci

aijej +
∑

j∈Ds
i

aijej +
∑

j∈Dw
i

aijej



 . (2.15)

To obtain an approximation for ei, for i ∈ F , a new expression in terms of ej , j ∈ Ci, is constructed.

To do this, the contributions from Ds
i and Dw

i in (2.15) must be replaced with terms designed to

approximate their values.

The unknowns in Dw
i are not strongly connected to i, so the error of any j ∈ Dw

i has little

influence on the error at i. Furthermore, (2.10) ensures the absolute value of aij for j ∈ Dw
i is

relatively small. In standard interpolation, the error from weakly connected neighbors is interpolated

by replacing ej for all j ∈ Dw
i with ei. This approximation changes (2.15) to





∑

j∈Dw
i

aij + aii



 ei ≈ −





∑

j∈Ci

aijej +
∑

j∈Ds
i

aijej



 . (2.16)

The requirement placed on strongly connected F -points is utilized in approximating the influence
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of all j ∈ Ds
i using unknowns in Ci:

ej ≈

∑

k∈Ci
ajkek

∑

k∈Ci
ajk

. (2.17)

Notice that if H1 is not completely satisfied, (2.17) the denominator is not well-defined for some i

and j. Following this approximation, (2.16) becomes





∑

j∈Dw
i

aij + aii



 ei ≈ −





∑

j∈Ci

aijej +
∑

j∈Ds
i

aij

∑

k∈Ci
ajkek

∑

k∈Ci
ajk



 . (2.18)

This provides an approximation to ei only in terms of error at unknowns in Ci (note the variable

name change for Ds
i and Dw

i to m and n, respectively, for clarity):

ei ≈ −







∑

j∈Ci
aijej +

∑

m∈Ds
i
aim

P

k∈Ci
amkek

P

k∈Ci
amk

aii +
∑

n∈Dw
i

ain






. (2.19)

Further manipulation yields

ei ≈ −
∑

j∈Ci





aij +
∑

m∈Ds
i

aimamj
P

k∈Ci
amk

aii +
∑

n∈Dw
i

ain



 ej. (2.20)

This result is in the form of (2.13) for i ∈ F . Therefore, the interpolation weight in standard

interpolation is

wij = −
aij +

∑

m∈Ds
i

aimamj
P

k∈Ci
amk

aii +
∑

n∈Dw
i

ain

. (2.21)

Coarse-Level Operators

In algebraic multigrid, the coarse-level operator is typically the product RAP , where R and P are

the restriction and prolongation operators, respectively, and R = PT . This coarse-level operator is

the Galerkin operator. Coarse-grid correction for the two-grid method using the Galerkin operator

yields vector v in Range(P ) minimizing ‖eh − Pv‖A, where ‖ · ‖A denotes the A-norm.

While the Galerkin product is convenient for algebraic theory, unintended side-effects on the

algorithmic complexity occur: the triple matrix product increases the density of the coarse-grid

operator.
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Setup Phase Deliverables

The AMG setup phase produces operators and sets of unknowns for each level in the multigrid

hierarchy. Below, subscripts denote the grid level, where level zero is the finest level. Therefore,

A0 = A and Ω0 = Ω, where Ω is the index set relating to unknowns on a level. The sets of output

produced are listed below.

Grids: Ω0 ⊃ Ω1 ⊃ . . . ⊃ ΩM

Grid operators: A = {A0, A1, . . . , AM}

Prolongation operators: P = {P0, P1, . . . , PM−1}

Restriction operators: R = {R0, R1, . . . , RM−1}

The AMG setup phase is shown in Algorithm 2.1.

Algorithm 2.1 AMG Setup Phase

AMG-Setup(A1) {

1: k← 0
2: while |Ωk| > stopping size do
3: Ωk+1 ← Coarse-Grid-Selection(Ak)
4: Pk ← Build-Prolongator(Ak, Ωk+1) /* prolongation operator from level k + 1 to k */
5: Rk ← (Pk)T /* restriction operator from level k to k + 1 */
6: Ak+1 ← RkAkPk /* Galerkin operator */
7: k← k + 1
8: end while
9: m← k /* store number of levels in hierarchy */

}

2.3.2 Solve Phase

The products of the setup phase are input to the solve phase, which implements relaxation and

coarse-grid correction. The number of presmoothing and postsmoothing sweeps performed is defined

by ν1 and ν2, respectively, and the order in which and the frequency of visits to a given level is defined

by the type of multigrid cycle used.

Common multigrid cycles are the V-cycle and the W-cycle, as depicted in Figure 2.4. These

cycles are defined recursively using the cycle index γ, which controls the number of times a coarse

level descends to a coarser level before ascending to the next fine level. For example, in a V-cycle

γ = 1, meaning each coarse level only restricts one time before interpolating a correction to the

next finer level. Because increasing γ exponentially increases the number of times coarse levels are

visited, only γ = 1 and γ = 2 are used in practice.
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Figure 2.4: V-cycle and W-cycle.

Relaxation, the transfer operators, and the multigrid cycle are combined to form the AMG solve

phase algorithm, of which a single iteration is outlined in Algorithm 2.2. The k = 0 in the function

header is a default value to be used when no value is passed.

Algorithm 2.2 AMG Solve Phase

AMG(A, x, b, ν1, ν2, R, P, m, γ, k = 0) {

1: if k < m then
2: x← Smooth(Ak, x, b, ν1) /* presmooth: apply smoother ν1 times */
3: r← b−Akx
4: rc ← Rkr /* restriction */
5: if k 6= 0 then
6: for i = 0 to γ do
7: ec ← AMG(A, 0, rc, ν1, ν2, R, P, m, γ, k + 1)
8: end for
9: else /* on fine level */

10: ec ← AMG(A, 0, rc, ν1, ν2, R, P, m, γ, k + 1)
11: end if
12: x← x + Pkec /* prolongation and update */
13: x← Smooth(Ak, x, b, ν2) /* postsmooth: apply smoother ν2 times */
14: return x
15: else /* on coarsest level */
16: Solve Akx = b
17: return x
18: end if

}
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Chapter 3

Coarse-Grid Selection

The focus of this thesis is on independent set-based methods, which form the largest class of coarse-

grid selection algorithms. Given heuristic H2, it is sensible to employ independent set methods

because they provide an approach to satisfying heuristic H1 while implicitly using H2 as a guideline.

Figure 3.1 diagrams the relationships between many independent set-based coarse-grid selection

methods. Five coarse-grid selection algorithms are introduced in this chapter: the classical Ruge-

Stüben algorithm, Cleary-Luby-Jones-Plassmann (CLJP), Falgout, Parallel Modified Independent

Set (PMIS), and Hybrid Modified Independent Set (HMIS). In Chapter 4, the behavior of CLJP

on structured problems is studied in detail, and Chapters 4 and 5 continue the discussion with

independent set-based algorithms that utilize graph coloring techniques.

3.1 Strength Graph

In the absence of a grid, AMG coarsening algorithms coarsen graphs. Coarse-grid selection generates

a strength matrix to determine which unknowns influence each other strongly. Introduced in the

previous chapter, classical strength of connection (2.12) is based on the following bound [14]:

∑

j 6=i

(

|aij |

aii

) (

ei − ej

ei

)2

≪ 1. (3.1)

This bound is true for all i in a symmetric M-matrix. When |aij |/aii is large (e.g., when i strongly

depends on j), then ei and ej must be nearly equal. This observation enables the selection of coarse

grids for which accurate interpolation is possible.

Equation (3.1) is not guaranteed to hold when A is not an M-matrix, resulting in coarse grids

that ineffectively represent smooth error. New strength measures are an area of active research [11],

and these measures may extend the applicability of AMG. This issue, however, does not directly

impact coarsening design since the strength matrix is used as input rather than being generated
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Figure 3.1: A partial taxonomy of independent set-based coarse-grid selection algorithms.

Figure 3.2: A strength matrix and associated graph. Edges point in the direction of dependence.
For instance, an edge exists from Vertex 1 to Vertex 4 because Vertex 1 strongly depends on Vertex
4, as indicated by nonzero in the first row, fourth column of the matrix.

by the method itself. The guidelines used for coarse-grid selection are independent of the type of

strength measure used. New strength measures are, therefore, applicable to coarse-grid selection

without modifying the coarsening algorithms developed herein.

Coarse-grid selection works on a vertex-weighted graph of the strength matrix

G(S) = (V, E), (3.2)

where V is the vertex set and E is the edge set. That is, the matrix S serves as the adjacency matrix

for a graph from which coarse degrees of freedom are selected. Figure 3.2 depicts a matrix and its

associated graph.

3.2 Survey

The coarse-grid selection algorithms of early AMG methods are based on the Ruge-Stüben (RS) [48]

coarsening method, which is inherently sequential since only one C-point is selected in each iteration.

When parallel AMG methods are considered, it is apparent the solve phase parallelizes in the same
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manner as geometric multigrid methods. The challenge is to parallelize the AMG setup phase. In

particular, parallelization of the coarse-grid selection algorithm presents the largest obstacle [17].

Several methods have been proposed, the first of which are “parallel Ruge-Stüben” methods. The

Cleary-Luby-Jones-Plassmann (CLJP) algorithm [18] followed and is a fully parallel algorithm which

combines the two pass method of the Ruge-Stüben algorithm into a single parallel pass. Hybrid

methods combining CLJP and Ruge-Stüben algorithms, have also been studied [37], notably Falgout

coarsening. To lower the memory demands of coarse-grid hierarchies, Parallel Modified Independent

Set (PMIS) and Hybrid Modified Independent Set (HMIS) were developed. These methods weaken

the heuristics used for coarse-grid selection and require different interpolation operators.

Other methods take substantially different approaches to coarsening. The coarsening technique

in [36] develops a parallel coarsening algorithm that utilizes RS. On each processor, RS selects several

different coarse grids, and then one coarse grid is selected per processor in a way to minimize special

treatment on processor boundaries. In [47], a greedy approach is used to produce a good splitting of

the unknowns into fine-grid and coarse-grid sets. Subdomain blocking techniques [43] offer another

approach for parallel coarse-grid selection by decoupling coarse grids and alleviating the need for

communication on coarse levels. In another form of AMG called smoothed aggregation [25, 24, 13],

coarse-level variables are selected by aggregating fine-level variables, rather than selecting subsets

of fine-level variables.

3.3 Ruge-Stüben Coarsening

The classical coarse-grid selection algorithm is Ruge-Stüben (RS) coarsening, which is a two pass

algorithm designed to satisfy H1. The first pass selects a maximal independent set guaranteeing

that each F -point strongly depends on at least one C-point. It is possible after the first pass that

the second condition in H1 remains unsatisfied. That is, there may be strongly connected F -points

not sharing a common C-point neighbor. To remedy this, RS incorporates a second pass to locate

and fix each of these instances by changing one of the two F -points to a C-point.

The methods studied in this thesis construct independent sets based on vertex weights in neigh-

borhoods.

Definition 3.3.1. The neighborhood of vertex i, denoted Ni, is the union of the sets containing

the strong influences of i and the strong dependencies of i: Ni = Si ∪ ST
i .

The RS algorithm begins by initializing the weight of each vertex to the number of vertices it
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strongly influences (Figure 3.3(a)). Following initialization, RS begins the first pass. Each iteration

of the first pass selects an unassigned vertex with the largest weight in the graph and makes it a

C-point. The neighbors of this C-point become F -points, and the weights of unassigned neighbors

of the newly selected F -points are incremented by one. The first pass is illustrated in parts (b)-

(k) of Figure 3.3. The second pass of the algorithm traverses the graph searching for strong F -F

connections with no common strongly influencing C-point. Two instances of strong F -F connections

without a common strongly influencing C-point are shown in Figure 3.3(l), and the result of the

second pass is depicted in Figure 3.3(m). RS coarsening is outlined in Algorithm 3.1.

Algorithm 3.1 Ruge-Stüben Coarse-Grid Selection

Ruge-Stüben(S, C = ∅, F = ∅) {

1: for all i ∈ V do /* initialization */
2: wi ← |ST

i | /* number of vertices strongly influenced by i */
3: end for
4: while C ∪ F 6= V do /* first pass */
5: Select i ∈ V such that wi ≥ wj for all j ∈ V
6: C ← C ∪ {i}
7: Fnew ← {unassigned vertices j ∈ Ni}
8: F ← F ∪ Fnew

9: for all j ∈ Fnew do
10: for all k ∈ Nj do
11: if k is unassigned vertex then
12: wk ← wk + 1
13: end if
14: end for
15: end for
16: end while
17: for all i ∈ F do /* second pass */
18: for all j ∈ Si ∩ F do
19: if Si ∩ Sj ∩ C = ∅ then
20: F ← F \ {j}
21: C ← C ∪ {j}
22: end if
23: end for
24: end for
25: return (C, F )

}

One goal of RS coarsening is to ensure that it produces the same result as standard coarsening

for structured problems (Figure 2.1). A method used by RS to mimic standard coarsening is the

incrementation of weights of vertices two hops from new C-points.

The RS algorithm selects only a single C-point per iteration, making it inherently sequential. New

methods were needed to select coarse grids when the graph is distributed across several processors.

The algorithms discussed in the remainder of this chapter and in Chapter 4 were developed in
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Figure 3.3: Ruge-Stüben coarse-grid selection. Unassigned vertices are white, F -points are yellow,
and C-points are blue. Weight initialization is shown in (a). The first RS pass is illustrated in
(b)-(k), and the second pass is in (l) and (m).
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response to this need.

3.4 H1 Parallel Coarse-Grid Selection

Two classes of parallel independent set-based coarsening algorithms have been developed. Recall

heuristic H1 from Section 2.3.1:

H1: For each unknown j that strongly influences F -point i, j is either a C-point or strongly depends

on a C-point k that also strongly influences i.

3.4.1 RS3

The first parallel coarse-grid selection methods sought to parallelize RS, rather than creating new

methods. A straightforward approach is to run RS independently on each processor domain. This

leads to a valid coarsening on the interior of each processor, but along processor boundaries it is

likely for H1 to be violated. By employing an additional pass along the processor boundaries after

the usual two RS passes, RS3 is able to correct H1 violations by converting one of the F -points

involved to a C-point. This approach often leads to a higher density of C-points on processor

boundaries than in the interior, which increases communication and memory costs for the AMG

method. Figure 3.4 demonstrates RS3 coarsening.

3.4.2 Cleary-Luby-Jones-Plassmann

The Cleary-Luby-Jones-Plassmann (CLJP) coarse-grid selection algorithm [18] was the first truly

parallel coarsening algorithm. Through the use of a parallel independent set algorithm based on

Luby’s maximal independent set algorithm [45], CLJP selects many C-points in each iteration.

Furthermore, CLJP is able to produce the same coarse grids regardless of how the data is partitioned

across processors, given the same initial conditions. Algorithm 3.2 outlines CLJP coarsening.

The contribution of the random number in Line 2 is to create unique values for vertices that

strongly influence the same number of neighbors. This augmentation generates many vertices in the

graph whose weights are maximal within their neighborhood, which leads to CLJP’s ability to select

multiple C-points in each iteration. The selection of the independent set in Line 5 is done so that

all vertices with the maximum weight in their neighborhood are placed in D (see Algorithm 3.3).

That is,

D = {i : wi > wj , ∀j ∈ Ni}. (3.3)
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(a) (b)

(c)

Figure 3.4: RS3 coarse-grid selection. Unassigned vertices are white, F -points are yellow, C-points
are blue, and a processor boundary passes through the middle of the graph. Weight initialization
is shown in (a). The coarse grid following the completion of RS on each processor is in (b), where
violations of H1 are highlighted. Addition of new C-points yields the final coarse grid in (c).
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Algorithm 3.2 Cleary-Luby-Jones-Plassmann (CLJP)

CLJP(S, C = ∅, F = ∅) {

1: for all i ∈ V do /* initialization */
2: wi ← |ST

i |+ rand[0, 1)
3: end for
4: while C ∪ F 6= V do /* selection loop */
5: D ← Select-Independent-Set(S, w)
6: C ← C ∪D
7: for all j ∈ D do
8: Update-Weights(S, j, w)
9: for all unassigned k ∈ Nj do

10: if wk < 1 then
11: F ← F ∪ {k}
12: end if
13: end for
14: end for
15: end while
16: return (C, F )

}

This set is guaranteed to be non-empty and independent, but not necessarily maximally independent.

Algorithm 3.3 CLJP Independent Set Selection

Select-Independent-Set(S, w) {

1: D ← ∅
2: for all i ∈ V do
3: if wi > wj for all j ∈ Ni then
4: D ← D ∪ {i}
5: end if
6: end for
7: return D

}

Weights are updated in CLJP using the following heuristics:

1. Values at C-points are not interpolated, so vertices that strongly influence a C-point are less

valuable as potential C-points themselves. See Figure 3.5(a).

2. If i and j both strongly depend on k ∈ C and j strongly influences i, then j is less valuable

as a potential C-point since i can be interpolated from k and the influence of j on i can be

interpolated through k. See Figure 3.5(b).

The implementation of these heuristics is outlined in Algorithm 3.4. In the algorithm, edges in

the graph have a value of 1, the absence of an edge is represented by 0, and “removed” edges are

represented by −1.
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(a) (b)

Figure 3.5: Weight update heuristics used by CLJP.

Algorithm 3.4 CLJP Weight Update

Update-Weights(S, k, w) { /* k is new C-point */

1: for all j such that Skj = 1 do /* Heuristic 1 */
2: wj ← wj − 1
3: Skj ← −1
4: end for
5: for all j such that Sjk 6= 0 do /* Heuristic 2 */
6: Sjk ← −1
7: for all i such that Sij = 1 do
8: if Sik 6= 0 then
9: wj ← wj − 1

10: Sij ← −1
11: end if
12: end for
13: end for

}

An example of CLJP coarse-grid selection is shown in Figure 3.6.

3.4.3 Falgout

The principle drawback of parallel RS methods is the need to correct problems on processor bound-

aries, which often leads to poor behavior such as increased communication or unnecessary demands

on memory. The quality of the coarse grid in the processor interior, however, is high. CLJP, on the

other hand, selects coarse grids without needing to make corrections on processor boundaries, but

produces poor results on structured meshes. The cause for this is the random augmentations used to

initialize the vertex weights. This phenomenon is investigated in Chapter 4. Hybrid methods using

a combination of RS and CLJP, therefore, are of natural interest and produce two strategies. One

technique, called BC-RS [37], uses CLJP on processor boundaries followed by coarsening processor

interiors using RS. The opposite approach – coarsening processor interiors followed by CLJP on

processor boundaries – works more effectively. This method is called Falgout coarsening [37] and is

outlined in Algorithm 3.5.
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Figure 3.6: CLJP coarse-grid selection.

Algorithm 3.5 Falgout Coarse-Grid Selection

Falgout(S) {

1: (C, F )← Ruge-Stüben(S)
2: Mark processor boundary vertices as unassigned
3: (C, F ) ← CLJP(S, C, F ) /* coarsen processor boundary with interior C/F assignments as

input */
4: return (C, F )

}

The amount of memory needed to store the matrix operators from all levels is quantified as the

operator complexity. The operator complexity is relative to the fine-level matrix and is defined as

Cop =

∑m
k=0 nnzk

nnz0
, (3.4)

where nnzk is the number of nonzeros in Ak. Large operator complexities limit the number of

degrees of freedom assigned to each processor, and operator complexity also influences the amount

of work in a multigrid cycle since the cost of relaxation is proportional to the number of nonzeros.

Falgout provides a clear advantage and delivers for problems where CLJP fails to produce a
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Figure 3.7: CLJP and Falgout coarsening on a 7-point Laplacian problem. Operator complexities
are shown in (a), and convergence factors are shown in (b).

competitive AMG method and low operator complexities. Take the 3D Laplacian as an example:

−∆u = 0 on Ω (Ω = (0, 1)3), (3.5)

u = 0 on ∂Ω.

When (3.5) is discretized using finite differences to yield the common 7-point stencil, CLJP has

particularly poor performance. Figure 3.7 plots the operator complexities and convergence factors

for this problem when CLJP and Falgout are used as the coarsening algorithms. The domain in all

tests is a 128× 128× 128 grid, which gives approximately two million unknowns.

The operator complexity plot demonstrates the incredible difference in memory needs for the

coarse-grid hierarchies produced by both methods. This impacts convergence factors and the time

needed for relaxation.

For problems with unstructured grids, the differences between Falgout and CLJP become less

pronounced. In some cases, CLJP yields a more effective AMG method [3].

3.5 H1′ Parallel Coarse-Grid Selection

For problems discretized on structured grids and 3D meshes, coarsening algorithms designed to

satisfy H1 produce coarse-grid hierarchies with large operator complexities. Producing coarse-grid

hierarchies with lower operator complexities motivated the development of additional algorithms

using a modified coarsening heuristic called H1′:
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H1′: For each F -point i, at least one j ∈ Si must be a C-point.

An equivalent statement is that each F -point must be strongly influenced by at least one C-point.

In graph theory, a set satisfying this condition is a converse dominating set [31], and H1′ algorithms

seek a minimal converse dominating set. The primary difference between H1 and H1′ is that H1′

does not require strongly connected F -points to share a strongly influencing C-point neighbor. This

change allows for the selection of sparser coarse grids.

The algorithms presented below are designed to utilize the relaxed constraints of H1′ and are

modified forms of CLJP and Falgout.

3.5.1 Parallel Modified Independent Set

Parallel Modified Independent Set (PMIS) [52] selects coarse grids using a modified form of CLJP.

Like CLJP, PMIS utilizes Luby’s maximal independent set algorithm to produce independent sets

in each iteration, meaning that PMIS uses random weight augmentations when initializing vertex

weights. Unlike CLJP, PMIS does not satisfy H1 and does not update vertex weights following

the selection of C-points. A variant of PMIS, called PMIS Greedy [15], updates vertex weights

following the selection of C-points in a fashion similar to that of RS. Algorithm 3.6 contains the

implementation of PMIS, and an illustration of PMIS is shown in Figure 3.8.

Algorithm 3.6 Parallel Modified Independent Set (PMIS)

PMIS(S, C = ∅, F = ∅) {

1: for all i ∈ V do /* initialization */
2: wi ← |ST

i |+ rand[0, 1)
3: end for
4: while C ∪ F 6= V do /* selection loop */
5: D ← Select-Independent-Set(S, w)
6: C ← C ∪D
7: for all j ∈ D do
8: for all k ∈ ST

j do
9: F ← F ∪ {k}

10: end for
11: end for
12: end while
13: return (C, F )

}

PMIS succeeds in selecting coarse-grid hierarchies with significantly lower operator complexities.

The prolongation operator must be redefined for cases where strongly connected F -points do not

share a strongly influencing C-point. The original fix for this situation is to treat the strongly

influencing F -point neighbor as a member of the weakly connected neighbor set Dw
i instead of
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Figure 3.8: PMIS coarse-grid selection.

Ds
i [52]. Its influence is then treated in the same manner as other weakly connected neighbors

in (2.16). This approach, however, is not accurate and often leads to poor convergence factors. Long-

range interpolation offers more accuracy for H1′-selected coarse grids than standard interpolation

and is currently an active area of research [15]. Additionally, the interpolation techniques in [10] are

applicable to H1′-selected coarse grids.

3.5.2 Hybrid Modified Independent Set

Similar to Falgout coarsening, Hybrid Modified Independent Set (HMIS) is a hybrid method. Rather

than using CLJP on the processor boundaries, HMIS uses PMIS, while a first pass of RS is applied

in the processor interiors. The first pass is sufficient since the second pass ensures strongly connected

F -points share common strongly influencing C-points, which is not required for this method. HMIS

is detailed in Algorithm 3.7.

3.5.3 Comparisons

To demonstrate the effect of PMIS and HMIS on operator complexity and convergence factors,

consider the 3D 7-point Laplacian problem from Section 3.4.3. Figure 3.9 plots the experimental
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Algorithm 3.7 Hybrid Modified Independent Set (HMIS)

HMIS(S) {

1: (C, F )← Ruge-Stüben(S) (first pass only)
2: Mark processor boundary vertices as unassigned
3: (C, F ) ← PMIS(S, C, F ) /* coarsen processor boundary with interior C/F assignments as

input */
4: return (C, F )

}

(a) (b)

Figure 3.9: Falgout, PMIS, and HMIS coarsening on a 7-point Laplacian problem. Operator com-
plexities are shown in (a), and convergence factors are shown in (b).

results for Falgout, PMIS, and HMIS. CLJP was not included in the plots in order to make operator

complexity trends more visible.

PMIS and HMIS are designed to produce lower operator complexities, and the experimental

results demonstrate smaller and more scalable operator complexities. Large convergence factors

are typical for PMIS and HMIS when using the modified standard interpolation described in Sec-

tion 3.5.1, demonstrating a need for improved interpolation operators for these methods. Despite

poor convergence factors, the cost of HMIS is only around twice the cost of Falgout to gain a digit

of accuracy in the residual, while the cost of PMIS is four times larger. This is due to cheaper

relaxation sweeps in PMIS and HMIS compared to Falgout.
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Chapter 4

Color-Based Parallel Coarse-Grid

Selection

CLJP tends to select grid hierarchies with large operator complexities, particularly for structured

two-dimensional or three-dimensional grids. Observations show that CLJP coarsening yields hier-

archies with large complexities due to the nature of the independent sets used to select C-points.

The independent sets in CLJP are constructed with the aid of random weight augmentations, which

do not depend in any way on the mesh structure. As a result, the coarse grid typically does not

retain the structured property of the fine grid. To address this phenomenon, the initialization of

vertex weights is modified to encourage the selection of well-structured independent sets by using a

graph coloring algorithm. Although the cost of coloring the graph prior to selecting the coarse grid

is non-trivial, significantly fewer C-points are often selected, saving time.

This chapter introduces three algorithms designed to improve CLJP and its H1′ counterpart

PMIS. Numerical experiments run using the modified CLJP algorithm, called “CLJP in color”

(CLJP-c), show improvements in operator complexities for both structured 2D and structured 3D

problems. In most cases, setup and solve times are markedly improved as well.

4.1 Analysis of CLJP

For certain types of problems, CLJP selects far more C-points than alternative algorithms, such

as Falgout coarsening. Consider a small 9-point Laplacian problem with homogeneous Dirichlet

boundary conditions, as in Figure 4.1(a). When the problem is coarsened using RS, the result is a

structured coarse grid with nine vertices, as shown in Figure 4.1(b). When the 9-point Laplacian

is coarsened with CLJP, the results are generally different since the random portion of the weight

given to each vertex has significant control over the final coarse grid. As a result, CLJP selects a

variety of grids.

Since the randomly weighted elements do not take problem structure into account, structure is

often lost on coarse levels. Figure 4.2 shows results from four selected runs by CLJP on the example
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(a) 9-point Laplacian problem on a
7 × 7 grid.

(b) 9-point Laplacian problem
coarsened using RS. C-points are
represented as filled black circles.

Figure 4.1: A 9-point Laplacian problem and the results of coarsening with RS.

(a) 10 C-points. (b) 12 C-points. (c) 13 C-points. (d) 16 C-points.

Figure 4.2: Coarse grids selected by CLJP for a 9-point Laplacian problem on a 7×7 grid. C-points
are represented with filled black circles.

problem. In each instance, more C-points are selected than by RS. This is not surprising since there

is only one configuration satisfying heuristic H1 with nine C-points.

On structured meshes, CLJP generally selects coarse grids with significantly greater numbers

of C-points than RS coarsening. Figure 4.3 plots observed frequencies of the number of C-points

selected by CLJP for the 7 × 7 Laplacian across 250 million trials. CLJP selects coarse grids with

nine C-points approximately two-percent of the time and selects between eleven and thirteen C-

points sixty-percent of the time. In fact, coarse grids with nine C-points are the eighth most likely

result.

These results are not limited to small problems. Figure 4.4 displays the same information as

Figure 4.3 but for a larger problem: a 9-point Laplacian on a 512× 512 grid. The mean number of

C-points selected in 50,000 trials was 82,488. The minimum number selected was 82,210. For this

problem, RS selects 65,536 C-points from a fine grid containing 262,144 vertices.

CLJP clearly selects too many C-points for certain types of problems. However, CLJP also

exhibits several attractive qualities. Foremost, it is entirely parallel and the results do not depend

on the processor topology. Also, the coarsening depends only on the weights assigned to vertices,
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Figure 4.3: Experimental results from testing CLJP on the 9-point Laplacian in Figure 4.1(a). The
plot shows the observed frequencies of the number of C-points selected by CLJP across 250 million
trials.
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Figure 4.4: Experimental results from testing CLJP on the 9-point Laplacian on a 512× 512 grid.
The plot shows the frequencies of the number of C-points selected by CLJP in 50,000 trials.
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meaning that CLJP selects the same coarse grid independent of the number of processors as long

as the random weight augmentations are identical in both cases. This is beneficial for both AMG

users and designers. Another positive quality in CLJP is that it coarsens to a single vertex without

requiring data redistribution.

The ability to produce the same coarse grid regardless of processor topology and coarsening to a

single vertex efficiently are qualities not shared by other RS-based coarse-grid selection algorithms.

These attributes make it worthwhile to examine ways of improving the performance of CLJP.

4.2 Modifying CLJP

Methods to modify the CLJP algorithm in order to achieve better operator complexities for struc-

tured problems are discussed in this section.

4.2.1 Observations

Several observations follow from the experiments in Section 4.1 about the behavior of CLJP. First,

Figure 4.2 demonstrates CLJP produces very different coarse grids when given different initial

weights. Not all coarse grids perform equally well. However, CLJP does not consider structure

when building a coarse grid. Further, the coarse grid selected affects how the solve phase performs

and also affects the runtime of the setup phase.

CLJP is unlikely to select the same coarse grids as RS or Falgout coarsening, but it does have

the ability to do so. The approach taken in this thesis is to develop a method that “encourages”

CLJP to pick coarse grids similar to those selected by RS and Falgout coarsening. A benchmark

goal for this method is to achieve performance comparable to, or better than, Falgout coarsening.

The results of CLJP coarsening depend significantly on the random weight augmentations of

each vertex, so the initialization step is a good starting point for modification. The random weight

augmentations exist to break ties between the weights of adjacent vertices. The negative effects

of the augmentations on the coarse grid are unintended, so modifying the weights to preferentially

select coarse grids with more structure is well-motivated.

4.2.2 Modifications

As discussed in the previous section, poorly structured independent sets in CLJP lead unstruc-

tured coarse grids. In this section, a modified CLJP algorithm is created by changing the weight
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initialization step (Line 2 in Algorithm 3.2) to include more information about the graph structure.

Graph coloring routines are used to implicitly extract information about the graph and create a

more structured independent set. The graph coloring problem is as follows:

Given a symmetric graph G = (V, E), where V is the vertex set and E is the edge set,

the graph coloring problem is to find a function σ which maps a color to each vertex

such that σ(v) 6= σ(w), for all (v, w) ∈ E.

The graph coloring operates on the symmetrized strength matrix. This is simply the strength matrix

modified so that all directed edges are replaced with undirected edges in the graph. Another view

is that vertex i has a different color from all j ∈ Ni.

Finding the optimal graph coloring (i.e., the graph coloring with the minimum number of colors)

is an NP-complete problem [32]. However, many heuristics to find near-optimal solutions have been

created for this problem. For the coarse-grid selection problem, we are interested in creating a

structured independent set, and many graph coloring heuristics satisfy this requirement.

Two types of coloring algorithms have been tested in this thesis: sequential greedy algorithms and

Jones-Plassmann parallel algorithms, although any coloring heuristics are applicable for use with

the algorithms introduced below. Sequential heuristics are able to compute graph colorings very

close to optimal for a variety of graphs [54, 40]. Furthermore, given the appropriate vertex coloring

order, an optimal coloring is obtained [6]. Greedy algorithms select a certain vertex coloring and

typically deliver acceptable results. Two popular greedy heuristics are saturation degree ordering

(SDO) introduced in [12] and a modified SDO called incidence degree ordering (IDO) [54]. In SDO,

the next vertex selected to be colored is the vertex adjacent to the greatest number of colors in

the graph. In IDO, the next vertex to be colored is adjacent to the greatest number of colored

vertices. The method introduced below uses an IDO ordering for coarse-grid selection for some

simulations, as in the case in the experiments at the end of this chapter. Lexicographic ordering

(i.e., an ordering where the vertices are colored in the order of their enumeration), however, is often

more effective since vertices in finite element meshes typically have a consistent, nearest-neighbor

type of enumeration. The lexicographic approach is less robust and requires the vertices to be

enumerated in a regular pattern, which is frequently the case.

The initial weights are modified to incorporate graph colors, which encourages CLJP to prefer-

entially select certain colors for inclusion on the coarse grid. In Figure 4.5, a 9-point Laplacian on

a 7× 7 grid is coarsened using the modified CLJP algorithm, called “CLJP in color” (CLJP-c) [2].

Although the resulting coarse grid is the same set as the black vertices in the middle graph, this
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Figure 4.5: Outline of CLJP-c. In the first step, CLJP-c takes the graph of the strength matrix
(left) and colors each vertex such that the color of vertex i is different than the color of all j ∈ Ni

(middle). In the next step, a modified initialization phase is run such that each color carries some
weight and there is a prioritization of colors. The result (right) shows the coarse grid selected by
CLJP-c when the black vertices are given priority. For this simple problem, the C-point set is the
set of black vertices.

situation is not typical. Each color in the graph is guaranteed to be an independent set, but a

maximal independent set is necessary to satisfy the first condition of H1. Maximal independent sets

are not, however, sufficient for satisfying the second condition of H1 for many graphs. In Figure 4.5

the black vertices are a maximal independent set.

In CLJP, the weight for vertex i is initially the sum of the number of strong influences of i and

a random number in (0, 1). The CLJP-c initialization includes information about the color of each

vertex. The CLJP-c initialization is outlined in Algorithm 4.1.

Algorithm 4.1 Weight Initialization for CLJP-c

CLJP-c-Weight-Initialization(S) {

1: σ ← Color-Graph(S) /* σ(i) is color of vertex i */
2: cℓ ← set of colors in G(A) /* “colors” are sequentially numbered integers beginning with 1 */
3: for all colors c ∈ cℓ do
4: colorWeight(c)← (c− 1)/|cℓ|
5: end for
6: for all i ∈ V do
7: wi ← |ST

i |+ colorWeight(σ(i))
8: end for

}

New to the CLJP-c initialization is the color weight. The color weight is a unique weight given

to each color and is included in vertex weights during initialization. The purpose is to establish a

hierarchy among colors. For example, the middle graph of Figure 4.5 has four colors, so the set of

colors cℓ = {1, 2, 3, 4}. The color weights are 0.0, 0.25, 0.5, and 0.75. In Figure 4.5, the black vertices

are color 4 and therefore have the “largest” weight among the colors. Line 4 of Algorithm 4.1 leads

to augmentations of 0.75 to the weights of black vertices, which is a greater augmentation than any

of their neighbors. Thus interior black vertices become C-points in the first iteration of the loop,
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and the remaining black vertices are selected in the second iteration of the loop.

4.2.3 Parallel CLJP-c

The choice of graph coloring algorithm impacts the overall design of parallel CLJP-c. The research

here explores three techniques for the implementation of CLJP-c. These methods use different

techniques to ensure no ties in the vertex weight exist across processor boundaries.

Ideally, a well-structured graph coloring is produced by a parallel graph coloring algorithm. The

parallel graph coloring algorithm tested with CLJP-c [39] does not produce such results. This par-

allel coloring algorithm works by first coloring processor boundaries in parallel and then by coloring

processor interiors using a sequential coloring algorithm with the processor boundary coloring as

input. A consistent graph coloring (i.e., one that satisfies the graph coloring heuristic for all vertices,

regardless or processor assignments) is produced, but leads to “tears” in the graph coloring. The

tears are a result of approaching color fronts on processor interiors. When the fronts meet, segments

exist where the coloring does not match and an out-of-place color is assigned. The strips of miscol-

oring have a small impact on the number of colors in the graph, but have a significant impact on

the structure of the coloring, which negatively affects the improvements provided by CLJP-c.

The next two approaches utilize a sequential graph coloring algorithm that produces a structured

coloring in processor interiors. A side-effect of using sequential coloring is inconsistent coloring

along processor boundaries. To handle inconsistencies, one approach utilizes the CLJP method of

using random augmentations to vertex weights. In the second approach, a parallel graph coloring

is employed along processor boundaries, in addition to the sequential coloring, to break any ties

between processor boundary vertices. In both approaches, vertices are guaranteed to have unique

weights within their neighborhoods.

4.2.4 Implementation Specifics

The algorithms used for the experiments of Section 4.5 are developed within the hypre framework [28]

from the Center for Applied Scientific Computing at Lawrence Livermore National Laboratory.

The graph coloring algorithm used is a greedy algorithm with IDO as the ordering. The IDO

algorithm is straightforward to implement, but does have shortcomings. In particular, the greedy

algorithm blocks CLJP-c from producing the same coarse grid invariant of processor topology.
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4.3 PMIS-c1 and PMIS-c2

The former sections examine a color-based modification to CLJP to improve performance. Recall

from Figure 3.1 that CLJP is the source of most parallel independent set-based coarsening algorithms

today. CLJP and PMIS are very similar in design, so the techniques in CLJP-c apply equally well

to PMIS. As a result, two H1′ color-based coarsening algorithms are introduced: PMIS-c1 and

PMIS-c2 [3].

PMIS-c1 is a direct application of CLJP-c for H1′. That is, the reduced graph of strong connec-

tions is colored such that no two adjacent vertices are assigned the same color. A color priority is

formed and weights in the initialization phase of PMIS are modified so that color priority is enforced.

Consequently, coarse grids emerge that are similar to those produced by HMIS. The algorithm is

generated by replacing Line 1 and Line 2 of Algorithm 3.6 with Algorithm 4.1.

PMIS-c2, on the other hand, is developed from the observation that PMIS is able to (and does,

given appropriate weights) select a coarse grid such that C-points are three hops from other C-points

in the graph, when taken to the limit. To produce a coarse grid with a distance-three sparsity pattern

using the graph coloring framework, a distance-two coloring algorithm is used. Now each vertex is

assigned a color that is unique from the colors of all vertices within two hops in the graph of the

symmetrized strength matrix. After substituting the graph coloring algorithm, PMIS-c2 proceeds

similar to PMIS-c1. The algorithm is identical to PMIS-c1, with the exception that Line 1 of

Algorithm 4.1 should read as follows.

1: σ ← Color-Graph-Distance-Two(S) /* σi is color of vertex i */

PMIS-c2 selects very aggressive coarse grids and requires accurate long-range interpolation in order

to yield AMG methods with acceptable convergence factors. The value of PMIS-c2 improves as

long-range interpolation methods continue improving.

4.4 Method Fingerprints

The purpose of this section is to build intuition regarding the coarse grids selected by the algorithms

introduced in Sections 4.2 and 4.3. Consider a small square domain partitioned into four domains by

ParMETIS [41]. The problem is discretized by finite elements with piecewise linear basis functions.

Figure 4.6 shows the partitions and C/F splittings algorithms in this chapter and in Chapter 3

compute.
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(a) Data partitions (b) RS3 (c) CLJP

(d) Falgout (e) CLJP-c (f) PMIS

(g) HMIS (h) PMIS-c1 (i) PMIS-c2

Figure 4.6: Coarse grids selected by various parallel coarsening algorithms for a discretized Laplacian
problem on an unstructured mesh. Figure (a) shows the four processor domains. Yellow squares are
F -points, and blue squares are C-points.

4.5 Experiments

The performance of parallel coarse-grid selection algorithms is studied computationally in this sec-

tion.
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4.5.1 Methods and Measures

Each problem is tested using seven coarsening algorithms: Falgout, CLJP, CLJP-c, PMIS, HMIS,

PMIS-c1 and PMIS-c2. Runs are made with the number of processors ranging from one to 512

in powers of two. Strength threshold θ (see Equation 2.10) is 0.25 for all coarsening algorithms,

and while changing θ may affect the complexities, the overall trends are expected to remain un-

changed. Thunder, a large parallel machine at Lawrence Livermore National Laboratory, is used

for all experiments. Thunder has 1002 quad-processor Itanium2 computing nodes, each with 8GB

RAM.

Problem Generation and Partitioning

Problems on regular grids are generated using routines in hypre [29]. Load balancing and problem

partitioning is not problematic since they are readily partitioned into portions of equal size.

The generation of problems on unstructured grids is done using the aFEM package [42], which

is a scalable, unstructured finite element problem generator. aFEM uses ParMETIS to partition

the problem domain prior to discretization. To test the behavior of AMG as problem size is scaled,

the amount of work given to each processor should be comparable. Equal sized partitions, however,

are not guaranteed for unstructured problems, so the amount of work assigned to each processor

is monitored in each test. Where the partitioning significantly departs from what is desired, plots

containing information on the partitioning of the problem are provided. For example, Figure 4.16

depicts the evolution of problem size through the experiment. First, the solid black line shows the

average number of unknowns per processor and is ideally constant. Surrounding the line are two

shaded fields representing the number of unknowns per processor. The dark gray field shows the

range in the number of unknowns per processor for all processors, whereas the light gray field shows

the range in the middle 90% of the distribution. Finally, the dashed line is drawn horizontally from

the average vertices per processor on the single processor trial.

Grid and Operator Complexity

In AMG, complexities are used to measure the size of the coarse-grid hierarchy. Grid complexity is

the number of unknowns (or vertices, in terms of the graph) on all levels relative to the fine level:

Cgrid =

∑m
ℓ=0 nℓ

n0
, (4.1)
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where m is the number of levels in the grid hierarchy and nℓ is the number of unknowns in the

matrix on level ℓ.

Recall from Section 3.4.3, operator complexity (3.4) is the number of nonzeros in the matrices

on all levels relative to the nonzeros in the fine-level matrix:

Cop =

∑m
ℓ=0 nnzℓ

nnz0
, (4.2)

where nnzℓ is the number of nonzeros in the matrix on level ℓ. The operator complexity is a measure

of the amount of memory needed, relative to the fine level, to store all of the matrices. It is also

a lower bound on the computation needed since the cost of relaxation depends on the number of

nonzeros in the matrices.

Convergence Factors

Convergence factor results provide information about the overall quality of the solve phase. For

results in this section, convergence factors are computed by averaging convergence factors from all

iterations until the norm of the relative residual is smaller than 10−8. If a relative residual norm

of 10−8 is not attained within 100 iterations, convergence factors from the first 100 iterations are

averaged.

Work per Digit-of-Accuracy

Neither convergence factor nor operator complexity results alone measure the amount of work re-

quired by a solve phase. By combining the convergence factor and cycle complexity, a measure of

the amount of work needed per digit-of-accuracy is realized. Work per digit-of-accuracy is defined

as

Wdigit = −
Ccycle

log ρ
, (4.3)

where ρ is the convergence factor and cycle complexity is a measure of work in each multigrid cycle.

The cycle complexity is related to the operator complexity and is defined as

Ccycle =

∑m
ℓ=0 nnzℓ · νℓ · γℓ

nnz0
, (4.4)

where nnzℓ is the number of nonzeros in the matrix on level ℓ, ν is the sum of the number of

presmoothing and postsmoothing steps on level ℓ, and γ is the cycle index. Recall the cycle index is
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Figure 4.7: An example tower plot. The tower plot represents information about the coarse-grid
hierarchy. Each level in the tower represents a level of the grid hierarchy, with the bottom level
being the finest level. Four pieces of information are represented in each level of the tower: operator
complexity, grid complexity, operator density, and the number of levels in the grid hierarchy.

used in the definition of the multigrid cycle (see Section 2.3.2). All experiments herein use a V(1,1)

cycle, which implies the cycle complexity is approximately double the operator complexity.

Tower Plots

To visualize and examine the properties of the grid hierarchy in more detail, a new visualization

tool called the tower plot is introduced. Tower plots visualize the entire coarse-grid hierarchy, level

by level, as illustrated in Figure 4.7. Each tower plot contains four pieces of information. First, the

height of a rectangle is that level’s contribution to operator complexity. For example, the height of

level ℓ is nnzℓ/nnz0. The total height of the tower is the total operator complexity of the hierarchy.

Second, the width of each level corresponds to that level’s contribution to grid complexity (i.e., the

number of degrees of freedom on that level relative to the fine level). The grid complexity for a level

is read by determining the location of the right edge of the corresponding block. For example, the

third level in the grid level hierarchy in Figure 4.7 contains approximately 24% of the number of

degrees of freedom of the fine level. Third, the darkness of the corresponding rectangle’s fill color

represents the sparsity of the matrix on level ℓ. In most cases, rectangle color remains white until

the coarsest levels. Finally, the coarsening algorithm and the number of levels in the grid hierarchy
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is listed.

4.5.2 Fixed Problem Sizes

The experiments are divided into two broad types of tests. The total size of the problem is fixed in

the first set of tests, regardless of the number of processors used. The purpose is to demonstrate the

behavior of the coarsening algorithms on processor boundaries. By keeping the size of the problem

fixed, the “surface area” of each processor domain increases as the number of processors is increased.

This is not a natural test for performance scalability; in a real-world simulation, the experimenter

normally assigns each processor an optimal amount of work.

3D 7-point Laplacian

The first problem is a 3D Laplacian:

−∆u = 0 on Ω (Ω = (0, 1)3), (4.5)

u = 0 on ∂Ω.

The problem is discretized using finite differences to yield the common 7-point stencil. The domain

in all tests is a 128× 128× 128 grid, resulting in approximately two million unknowns.

Some coarsening algorithms are more sensitive to processor boundaries than others, so degrada-

tion in performance as the number of processors increases is expected. The algorithms most sensitive

to processor boundaries are the hybrids (Falgout, HMIS) and the graph coloring-based algorithms

(CLJP-c, PMIS-c1, PMIS-c2).

Figure 4.8 plots setup times, convergence factors, operator complexities, and work per digit-of-

accuracy for each of the trials in the experiment. The large operator complexities of CLJP makes

it difficult to see the behavior of the others in detail, so a second plot of operator complexities is

displayed in Figure 4.9. The overall trend is a decrease in setup time of each coarsening algorithm

as the number of processors is increased. CLJP experiences the greatest performance gains as the

number of processors grows, but requires large amounts of work to build the coarse-level hierarchy.

The amount of work saved by splitting work across processors is much larger than the cost in

communication. On the other hand, several coarsening algorithms initially experience an increase

in setup time due to the minimal amount of work. Time spent communicating for the two processor

test is not offset by savings in computing time, so total time increases. In the limit, however, all of
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Figure 4.8: Results for the fixed problem size 3D 7-point Laplacian problem. The total degrees of
freedom in the problem is fixed while the number of processors increases. The legend from the first
plot applies to all four plots.
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Figure 4.9: Normalized setup times and a closer view of operator complexities for the fixed problem
size 3D 7-point Laplacian problem.

the algorithms experience decreases in setup time.

There is a practical limit to gains made through parallelism for coarse-grid selection algorithms

due to communication across processor boundaries. Figure 4.9 shows normalized setup time, which

is the setup time in a trial divided by the setup time in the single processor trial. At the right side

of the plot, some lines are increasing, meaning the savings in computation are no longer larger than

the extra cost in communication. Additionally, the setup phase requires the least amount of time

on 128 processors, where the times are between 2% and 10% of the times on a single processor.

The preferred outcome for the convergence factors is invariance with the number of processors

since parallelism does not improve the rate of convergence, but rather targets the computational

cost in each iteration. In most cases, convergence factors are constant across all trials; the largest

exception is HMIS.

The increase in convergence factors for HMIS is due to large differences in the “quality” of the

coarse grid in the interior and the coarse grid on the processor boundary for HMIS. The interior

part of each processor’s portion of the mesh in HMIS is coarsened similarly as in RS, which performs
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at least as well as Falgout in terms of convergence factor. However, the processor boundary coarse

grid is selected using PMIS. The plot shows the PMIS convergence factors are diminished. As the

number of processors is increased, the HMIS coarse grids have more vertices coarsened by PMIS, so

performance degrades.

Similar to convergence factor, it is desirable for increased parallelism to have little impact on

the operator complexity as the problem is divided among multiple processors. Both CLJP and

PMIS are largely immune to the number of processors since they have the ability to produce the

same coarse-grid hierarchy independent of the number or processors on which the algorithm is

run [18, 52]. The operator complexity analyzed in Figure 4.8 shows each algorithm produces coarse-

grid hierarchies of similar operator complexities on one processor versus hundreds of processors. The

largest increase occurs with Falgout, which grows from approximately 5 to 6.5. In some cases, the

operator complexity decreases by a small amount as the number of processors increased. Finally,

as expected from previous observations [37, 52, 2], CLJP produces grid hierarchies with operator

complexities too large to be a viable method. CLJP produces unusually large operator complexities

for problems on structured meshes, but this phenomenon is not present on unstructured meshes.

Recall work per digit-of-accuracy is a quantity that depends on both the cycle complexity and

on the convergence factor. As shown in Figure 4.8, Falgout and CLJP-c are the most cost effective

methods for the fixed problem size 7-point Laplacian. Falgout and CLJP-c exhibit the lowest con-

vergence factors and also maintain moderate operator complexities compared to the lowest operator

complexities observed. Despite a reasonable convergence factor, AMG with CLJP is more expensive

than all other methods due to extremely large operator complexities.

PMIS, HMIS, PMIS-c1, and PMIS-c2 produce much lower operator complexities. The tower plots

for each coarsening algorithm run on 256 processors are shown in Figure 4.10. On 256 processors,

CLJP selects coarse grids that produce matrices with a larger number of nonzeros on levels 2–10

than on level 1. Level 10 has more nonzero entries than level 1, despite having less than 5% the

number of unknowns. The tower plots illustrate the similarity in complexities of the grid hierarchies

selected by HMIS and PMIS-c1 and reveal that these coarsening algorithms appear nearly identical

in terms of operator and grid complexity. This is further emphasized by the plots in Figure 4.8,

which show HMIS and PMIS-c1 are producing AMG solve phases with similar performance.
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Figure 4.10: Tower plots for the fixed problem size 3D 7-point Laplacian problem. The towers shown
are for the 256 processor trials. Notice the scale is not the same in each plot.
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3D Unstructured Laplacian

The 3D unstructured Laplacian is also tested using a fixed problem size by varying the number

of processors used to solve the problem. The Laplacian on the unit cube (4.5) is used, but is

now discretized using finite elements on an unstructured mesh. The simulation is scaled up to 512

processors and has approximately 940,000 degrees of freedom. Figure 4.11 plots the setup time,

convergence factor, operator complexity, and work per digit-of-accuracy results.

The setup times are relatively low compared to the structured case. The order of the algorithms

by setup time is similar to the structured test, yet some differences are notable (e.g., CLJP is less

expensive than both Falgout and CLJP-c in the problem). As before, the setup time reaches a

minimum as parallelism is increased before beginning to increase after 128 processors. Figure 4.12

shows that the algorithms reach 10% of their single processor cost when run on 128 processors, in

the worst case. Finally, the order of the algorithms by normalized setup time in Figure 4.12 is much

different from the order in the structured case presented in Figure 4.9.

The convergence factors and operator complexities exhibit little variance as the problem is par-

titioned into more subdomains. Initially, there is growth in operator complexity when moving from

one processor to two. Subsequently, operator complexities remain nearly constant. Operator com-

plexities are much lower for CLJP in this experiment compared to the structured case, as depicted

in Figure 4.13.

Much less work is needed per digit-of-accuracy in the unstructured test. In most cases, the

amount of work per digit-of-accuracy is growing slightly, but the growth is relatively small given the

number of processors used in the largest test.

The two fixed size tests are designed to explore the parallel behavior of the setup phase while

using a variety of coarse-grid selection algorithms. The performance of AMG is largely insensitive

to the number of processors used for these problems. Moreover, the operator complexities in AMG

show little change regardless of the number of processors, even for the structured problem, which is

highly impacted by coarse grids that do not maintain the structure of the fine grid. If a sufficiently

large number of processors is used, operator complexities are expected to degrade, but 512 processors

is already a departure from practical conditions for a problem of this size.

4.5.3 Scaled Problem Sizes

The fixed size tests from the previous section are designed to illustrate how the coarse-grid selection

algorithms work as parallelism is increased. In practice, however, it is expected that as few processors
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Figure 4.11: Results for the fixed problem size 3D unstructured Laplacian problem discretized on
the unit cube. The total degrees of freedom in the problem is fixed while the number of processors
increases. The legend from the first plot applies to all four plots.
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Figure 4.12: Normalized setup times for the fixed problem size 3D unstructured Laplacian problem
discretized on the unit cube.

as necessary are used to solve a given problem.

The remainder of the experiments in this thesis scale the size of the problem to match the number

of processors used. That is, the number of unknowns per processor is kept close to the number of

unknowns on a single processor. This allows the setup phase algorithms to be observed under more

natural conditions.

3D 7-point Laplacian

The structured problem (4.5) is now re-addressed, except the problem size is scaled as the number of

processors increases. On one processor, the problem is discretized on a 50× 50× 50 grid, for a total

of 125,000 unknowns. On 256 processors, the problem is on a 400 × 400 × 200 grid, which results

in 32 million unknowns. Such small problem sizes are necessary for the algorithms producing high

operator complexities to have sufficient memory. The results for normalized setup time, convergence

factor, operator complexity, and work per digit-of-accuracy are given in Figure 4.14. The plots reveal

very different results than the plots of Section 4.5.2.

The figure illustrates that some algorithms are not performing near optimal in terms of setup

time. In particular, CLJP, CLJP-c, and Falgout are each exhibiting large growths in their setup

times. CLJP setup time is growing more slowly than Falgout and CLJP-c, but the growth is still

significant. In terms of actual time (see Section C.3), CLJP is more expensive than CLJP-c or

Falgout on 256 processors, but assuming the trend continues, CLJP requires less time than Falgout

and CLJP-c for the problem run on 1024 processors. Interestingly, the operator complexities of

the grid hierarchies generated by CLJP are extremely large, creating large numbers of edges in

the coarse level graphs, which requires large amounts of time for CLJP to update vertex weights.
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Figure 4.13: Tower plots for the fixed problem size 3D unstructured Laplacian problem on the unit
cube. The towers shown are for the 512 processor trials.
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Figure 4.14: Results for the scaled 7-point Laplacian problem. The legend from the first plot applies
to all four plots.
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Neither CLJP-c nor Falgout are producing large operator complexities, so the extra cost for these

algorithms is due to other operations. A portion of the setup time is due to implementation and

data structure issues, and another contribution is from the RS portion of Falgout and the coloring

in CLJP-c. To this end, Chapter 5 introduces a new algorithm aimed at improving the efficiency of

CLJP-c.

The convergence factors grow for all problem sizes and coarsening algorithms. At 512 processors

the convergence factors are growing at approximately the same rate as at two processors. Notice the

PMIS-like algorithms (PMIS, HMIS, PMIS-c1, and PMIS-c2) are the slowest to converge. In the

case of PMIS and PMIS-c2, the sparsity of the coarse grids selected and also the lack of preservation

of the structure of the grid by PMIS lead to the slow convergence factors. Both methods produce

coarse grids for which a good interpolation operator exists. The slow convergence observed implies

that the prolongation operator is inadequate to compensate for the sparse coarse grids. CLJP-c and

Falgout yield the fastest convergence factors since these methods produce coarse grids that work

well for the given structured problems.

The PMIS-like algorithms all produce grid hierarchies with much lower operator complexities

than other methods, and the operator complexities display little or no growth as the problem size

is increased. The performance of CLJP is degraded since the problem is discretized on a logically

rectangular grid. The growth of operator complexities produced by CLJP is much larger than that

of the other methods, as illustrated in Figure 4.15.

The amount of work per digit-of-accuracy grows since all tests result in growing convergence

factors. Despite producing relatively large operator complexities, CLJP-c and Falgout create much

cheaper AMG methods for the structured problem than the other methods since the convergence

factors are much lower than with PMIS-like methods and the operator complexities are much lower

than with CLJP.

3D Unstructured Laplacian

In this section, results are reported for the 3D unstructured Laplacian problem (4.5). The problem

on a single processor contains approximately 211,000 unknowns. The largest problem is on 512

processors with approximately 100 million unknowns, which gives an average of 198,000 unknowns

per processor. The partition size data for this problem is shown in Figure 4.16. The partition sizes

fluctuate and are reflected in the results, especially in the operator complexity plot. Normalized

setup times, convergence factors, operator complexities, and work per digit-of-accuracy are reported
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Figure 4.15: Tower plots for the 7-point Laplacian scaled problem. The towers shown are for the
512 processor trials. Notice the scale is not the same in each plot.
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Figure 4.16: Partition size data for the 3D unstructured Laplacian scaled problem and the 3D
anisotropic scaled problem.

in Figure 4.17.

As in the structured problem, the setup times for the RS-like algorithms are observed to be

growing as the problem size grows. A twenty-fold increase in setup time from one processor to 512

processors is observed. As before, the PMIS-like algorithm setup times are growing, but at a much

slower rate than the RS-like algorithms.

The convergence factors are similar to the structured case with one major difference: both CLJP

and PMIS perform better on unstructured meshes than on structured meshes. In the structured

problem, several groups of lines were present in the plot. However, two groups now appear in

the plot: one for the RS-like algorithms and one for the PMIS-like algorithms, meaning CLJP and

PMIS both perform as well as algorithms related to them. Also, convergence was slower than for the

structured problem, and in all cases the convergence factors increased as the problem size increased.

The operator complexity results demonstrate that PMIS-like methods produce grid hierarchies

with extremely low operator complexities which do not grow as the problem size grows. There is

little variation in the operator complexities produced by each of the PMIS-like algorithms and little

variation is apparent in the tower plots in Figure 4.18. The other algorithms produce operator com-

plexities that are much larger and increase as the problem size grows. Moreover, Falgout coarsening
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Figure 4.17: Results for the 3D unstructured Laplacian scaled problem. The legend from the first
plot applies to all four plots. The final data point for the Falgout line was removed from the final
two plots because the operator complexity data was corrupted by overflow.
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produces operator complexities consistently and significantly larger than those produced by CLJP

and CLJP-c.

The work per digit-of-accuracy results show CLJP to be the cheapest method available for the

unstructured case, with CLJP-c a close second. The large difference in CLJP performance on

structured versus unstructured grids is again highlighted. PMIS-c2 is the most expensive method,

but is comparable to the other PMIS-like algorithms.

3D Unstructured Anisotropic Problem

A 3D unstructured anisotropic problem is defined as follows:

−(0.01uxx + uyy + 0.0001uzz) = 0 on Ω (Ω = (0, 1)3), (4.6)

u = 0 on ∂Ω.

The sizes for (4.6) are identical to those in the 3D unstructured Laplacian from the previous sec-

tion. On one processor, the problem has approximately approximately 211,000 unknowns. On 512

processors there is approximately 100 million unknowns, giving an average of 198,000 unknowns

per processor. Figure 4.19 plots the observed normalized setup times, convergence factors, operator

complexities, and work per digit-of-accuracy for this experiment. The effects of the non-uniform

partitioning are now evident. Comparing the pattern of growth in setup time in Figure 4.19 with

the partition data in Figure 4.16, the fluctuations in work per processor affect both setup time and

operator complexity.

The normalized setup time results for (4.6) are similar to the results from the 3D unstructured

Laplacian setup time data (Figure 4.17). The rate of setup time growth, however, is lower in this

problem compared to the isotropic problem, while the convergence factors are higher than in any

other problems tested. In each case, the convergence factors approach one. Operator complexities

for the anisotropic problem are similar to, but slightly smaller than, the complexities observed in

the isotropic problem. The tower plots in Figure 4.20 show the complexities on each level in more

detail. Finally, the amount of work needed for one more digit-of-accuracy in the residual is large

compared to all other problems examined, which is due to the slow convergence observed.
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Figure 4.18: Tower plots for the 3D unstructured Laplacian scaled problem. The towers shown are
for the 256 processor trials.
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Figure 4.19: Results for the 3D unstructured anisotropic problem. The legend from the first plot
applies to all four plots.

58



Figure 4.20: Tower plots for the 3D unstructured anisotropic problem. The towers shown are for
the 256 processor trials.
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Figure 4.21: The problem domain for the 3D Laplacian holes test problem. The right image is a
close-up view of one of the holes.

3D Laplacian Holes

The purpose of this experiment is to examine the effect on the performance of coarsening algorithms

on a problem with a more complicated geometry. A thin slab with many holes drilled completely

through the material is used as the problem geometry (see Figure 4.21), creating more boundaries

than earlier problems.

The problem solved on this domain is once again the Laplacian:

−∆u = 0 on Ω, (4.7)

u = 0 on ∂Ω.

On one processor the problem receives approximately 380,000 unknowns. On 512 processors the

problem has about 167 million unknowns, giving an average of 327,000 unknowns per processor.

Figure 4.22 plots the normalized setup time, convergence factor, operator complexity, and work per

digit-of-accuracy data from these tests. The normalized setup time results are similar to Figure 4.17,

except the growth in time is less pronounced for (4.7). Falgout, CLJP, and CLJP-c experience the

greatest increase in setup times.

The convergence factors for (4.7) are initially lower for each coarsening algorithm than in the

unstructured Laplacian problem, but are similar for larger problems. This is due to the large increase

of interior vertices relative to the boundary vertices for the largest trials.

Operator complexities in the 3D unstructured Laplacian on the unit cube versus on the holes

geometry (4.7) are also similar. Operator complexities are lower in this test, but the rates of

growth and the performance of the algorithms relative to one another are similar. The tower plots
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Figure 4.22: Results for the 3D unstructured Laplacian problem on the holes geometry. The legend
from the first plot applies to all four plots. The final data points have been removed from several of
the lines on the operator complexity and work per digit-of-accuracy plots due to overflow.
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in Figure 4.23 show significant differences compared to the tower plots for the 3D unstructured

Laplacian (Figure 4.18).

With the complexities and convergence factors behaving similarly between the 3D unstructured

Laplacian on the unit cube versus on the holes geometry, the work per digit-of-accuracy results are

also similar. A clear difference is that (4.7) is less expensive to solve than the unstructured Laplacian

on the unit cube due to slightly lower convergence factors and lower operator complexities.

Between this problem and the unstructured Laplacian on the unit cube, the most noticeable

difference is that (4.7) is less expensive to solve and exhibits less growth in setup time. Overall,

creating a larger “surface area” yields a geometry that is easier for coarsening algorithms to operate

on, but the general characteristics of the solver’s performance do not change significantly.

4.6 Conclusions

In this chapter, a new technique is introduced which is designed to address large operator complex-

ities in grid hierarchies generated by CLJP for structured two-dimensional and three-dimensional

problems. Modifications to the weight initialization step in CLJP to include information related to

the structure of the problem domain leads to improved performance and lower operator complexities.

The structural information is computed by graph coloring algorithms. Color weights (i.e., weights

unique to each color in the graph) are included in the weight initialization of CLJP to encourage

preferential selection of certain sets of vertices. The coloring technique and related modifications

produce the CLJP-c algorithm.

The experiments in this chapter demonstrate CLJP-c consistently produces lower operator com-

plexities and smaller solve times compared to CLJP. Furthermore, CLJP-c’s performance is often

similar to, or better than, Falgout coarsening.

Application of CLJP-c to PMIS leads to the development of two color-based H1′ coarsening

algorithms: PMIS-c1 and PMIS-c2. PMIS-c1 results from a direct application of the coloring idea

in CLJP-c. A more aggressive approach is taken in the development of PMIS-c2 by producing coarse

grids with C-points as distant from one another as allowed by heuristic H1′.

A series of experiments examine the behavior of coarsening algorithms under different conditions.

Run time, convergence factors, operator complexities, and work per digit-of-accuracy are reported

in each test, revealing unique behavior. In general, PMIS-like algorithms always produce grid

hierarchies with lower operator complexities, and RS-like algorithms usually yield methods with
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Figure 4.23: Tower plots for the 3D unstructured Laplacian problem on the holes geometry. The
towers shown are for the 64 processor trials.
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smaller convergence factors. In some tests, such as the anisotropic diffusion problem in Section 4.5.3,

AMG convergence is prohibitively slow.
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Chapter 5

Bucket Sorted Independent Sets

5.1 Introduction

Chapters 3 and 4 demonstrate the behavior of independent set-based coarse-grid selection algorithms.

One common design property among the selection algorithms is a routine to search for vertices to

become C-points. Additionally, an update in the weights of vertices as the coarse-grid selection often

follows. In this chapter, new theory and algorithms to decrease the computational cost associated

with the search and weight update procedures used in coarse-grid selection are presented.

5.2 CLJP-c

Recall that CLJP-c colors the graph of S before selecting C-points, and the colors are used as one

component of the vertex weights. As a result, the structure of the coarse grids selected is improved.

More formally, the use of graph coloring provides the following important result.

Theorem 5.2.1. For all pairs of vertices i and j ∈ Ni CLJP-c guarantees wi 6= wj.

Proof. Assume two adjacent vertices i and j have the same weight. That is, |ST
i | = |S

T
j | and the

weight augmentation provided through coloring is the same for i and j. The graph of S, however,

is colored such that i and j are different colors for all j ∈ Ni, so a contradiction is reached.

Theorem 5.2.1 establishes that all adjacent vertices have different weights in CLJP-c, which is

not guaranteed in CLJP, although is unlikely to occur. The following corollaries are a result of

Theorem 5.2.1.

Corollary 5.2.1. Any set of vertices in the graph of S that share the same weight is an independent

set.

Corollary 5.2.2. The set of vertices with the largest weight in the graph of S form an independent

set satisfying 5.1. That is, each vertex in that independent set has a uniquely maximal weight in its
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neighborhood.

The first corollary states that independent sets can be selected in the graph simply by selecting

sets of vertices with the same weight. Corollary 5.2.2 refines this observation to a subset of vertices

guaranteed to satisfy the selection criterion. In particular, it shows it is possible to build the coarse

grid by selecting vertices with the maximum weight, updating weights, selecting the next set of

vertices with maximum weight, and so on. This approach is taken by the algorithm developed in

Section 5.4. It is proven in Section 5.4.1 that despite the difference in approach, the resulting coarse

grid is the same as that selected by CLJP-c.

5.3 Coarse-Grid Selection Search and Weight Update

CLJP and its descendents select an independent set D in each iteration. Stated originally in Sec-

tion 3.4.2, the condition for selecting D is that all vertices i ∈ D must satisfy

wi > wj for all j ∈ Ni. (5.1)

CLJP and CLJP-c rely on a search routine to locate locally maximal weights and on a weight update

routine to modify weights of vertices connected to new C-points.

The algorithms for searching and updating vertex weights in CLJP in detail are examined in this

section. In particular, the impact of using a sparse matrix format on the coarsening procedure. The

pseudo-code below assumes the software uses a compressed sparse row (CSR) [49] matrix format

or other similar format, which are common matrix formats in numerical software. CSR provides

low memory costs for storing sparse matrices and provides efficient access to the nonzeros in a row.

Accessing the nonzeros in a column is an expensive operation in this format and strongly influences

the weight update routine in CLJP-style algorithms because S is, in general, not symmetric.

The search step in CLJP is implemented as shown in Algorithm 5.1. In the first iteration, Line 3

is run 2|E| times. The total cost of search in constructing the coarse grid depends on the number

of iterations needed. Even in the best case of Ω(E) time, the cost is significant when the graph

contains large numbers of edges, as usually happens on the lower levels in the grid hierarchy (see [3]

for examples). In the next section, a new technique is introduced for conducting the search in

coarse-grid selection algorithms independent of the number of edges in the graph.

Pseudo-code for the weight update in CLJP is shown in Algorithm 5.2. The level of complication

in this update routine is due to the CSR format and the need to find vertices strongly influenced
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Algorithm 5.1 Coarse-Grid Selection Graph Search

Search-Graph(S, C, F ) {

1: D ← ∅
2: for all i /∈ (C ∪ F ) do
3: if wi > wj , ∀j ∈ Ni then
4: D ← D ∪ {i}
5: end if
6: end for
7: return D

}

by new C-points. When a new C-point k is selected, the first type of weight update is trivial since

determining the vertices in Sk is inexpensive. The second type of update is more expensive since

the vertices influenced by k are difficult to determine in a CSR format. The update requires a

search of many vertices i and all of their strong influencing neighbors j. The routine then searches

strongly influencing j to determine if any k ∈ D strongly influences both i and j. The cost increases

dramatically as the density of S increases. Large operator complexities have a disproportionately

large impact on coarse-grid selection run time. In the next section, a modified update routine to

compliment the new search technique is introduced.

5.4 Bucket Sorted Independent Set Selection

In this section, new techniques for searching the graph of S for new C-points and subsequently

updating the weights of remaining vertices are developed. The new algorithm is labeled Bucket

Sorted Independent Sets (BSIS) to reflect the data structure used.

Like CLJP-c, BSIS depends on graph coloring, but utilizes modified routines for search and weight

update. Furthermore, rather than applying the color information to augment vertex weights, BSIS

uses the colors in a bucket data structure. Once initialized, this data structure selects independent

sets, which satisfy the conditions in (5.1), in constant time.

5.4.1 Coarse Grid Invariance

Theory is developed in this section to prove coarse-grid selection invariance in general independent

set-based algorithms. The algorithms considered thus far select independent sets using (5.1), mean-

ing i is eligible to be in D if its weight is larger than the weights of vertices in its neighborhood

Ni. Recall the neighborhood of i (Definition 3.3.1) is the set of vertices strongly influenced by i or

strongly influencing i. Algorithms relying on different and larger neighborhoods, such as distance-d
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Algorithm 5.2 CLJP Weight Update for CSR Matrix

Update-Weights(S, D, C, F, w) {

1: for all d ∈ D do
2: for all i ∈ Sd do
3: wi ← wi − 1 /* see Figure 3.5 left */
4: Sd = Sd \ {i} /* removing edge from graph */
5: end for
6: end for
7: for all i /∈ (C ∪ F ) do
8: for all k originally in Si do
9: if k ∈ D then

10: mark k NEW-C-POINT
11: end if
12: end for
13: for all j ∈ Si do
14: if j /∈ D then
15: for all k ∈ Sj do
16: if k is marked NEW-C-POINT then /* i and j mutually influenced by k */
17: wj ← wj − 1 /* see Figure 3.5 right */
18: Si = Si \ {j} /* remove edge from j to i */
19: end if
20: end for
21: end if
22: end for
23: for all k originally in Si do
24: if k ∈ D then
25: unmark k
26: Si = Si \ {k} /* remove edge from k to i, if present */
27: end if
28: end for
29: end for

}

neighborhoods, are conceivable.

Definition 5.4.1. The distance-d neighborhood of i, denoted N d
i , is the set of vertices within d hops

of i in the symmetrized strength matrix, excluding i. That is, N d
i =

[

⋃

j∈Nd−1
i

(Nj ∪ {j}) ∪ Ni

]

\{i},

where d > 0 and N 0
i = ∅.

For a general independent set-based coarse-grid selection algorithm, a vertex i is eligible to be

added to D if

wi > wj for all j ∈ N s
i , (5.2)

where N s
i is the selection neighborhood of i. Although the distance-d neighborhood is a sensible

choice for the selection neighborhood, this discussion is not limited to such cases. It is assumed,

however, the matrix formed by N s
∗ (i.e., the selection sets for all vertices) is symmetric. This is

equivalent to stating if j ∈ N s
i , then i ∈ N s

j for all i and j in the vertex set. Furthermore, this
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discussion assumes the weight of vertex i is only decremented following weight updates and is never

modified due to the assignment of a vertex j /∈ N s
i to the C-point set.

Given a symmetric, but otherwise arbitrary, set of selection neighborhoods, the set of vertices

potentially able to affect the vertex weight of i or j ∈ N s
i is the extended selection neighborhood.

Definition 5.4.2. The extended selection neighborhood of i, denoted N 2s
i , is the union of the

selection neighborhood of i with the selection neighborhoods of the vertices in N s
i , excluding i. That

is, N 2s
i =

[(

⋃

j∈N s
i
N s

j

)

∪ N s
i

]

\ {i}.

When a vertex i satisfies the generalized selection condition (5.2), no other C-point assignments

affect wi. This is formalized below.

Lemma 5.4.1. If (5.2) is satisfied for vertex i, then i must be the next vertex in {i}∪N s
i to become

a C-point, regardless of any other selections and updates made in the graph.

Proof. The satisfaction of (5.2) means wi > wj for all j ∈ N s
i . For i to not become a C-point, its

weight must become smaller than some j ∈ N s
i . The weight of i, however, is not decremented unless

some j ∈ N s
i satisfies (5.2) and becomes a C-point, which is impossible until after i is assigned to

the C-point set.

To demonstrate all algorithms using the same selection neighborhood and update rules select

identical coarse grids, a proof with an inductive argument is presented below. The base case is

provided by the first set of vertices satisfying the general selection conditions.

Definition 5.4.3. Let D0 be the set of all vertices satisfying (5.2) in the first iteration of coarse-grid

selection.

Vertices in D0 are destined to become C-points regardless of the algorithm used to build coarse

grids. In the independent set-based algorithms discussed in Chapters 3 and 4, all D0 vertices become

C-points in the first iteration. Any algorithm constructed, however, eventually selects all D0 vertices

as C-points, as proven in the following lemma.

Lemma 5.4.2. Given the same selection neighborhoods and update heuristics, all algorithms select

vertices in D0 as C-points.

Proof. The proof follows from Lemma 5.4.1. All vertices in D0 satisfy the selection condition (5.2),

so the assignment of any other C-point has no effect on the weight of a D0 vertex.

69



Lemma 5.4.2 states that any coarse-grid selection method using the general selection condition

invariably selects D0 vertices as C-points. This result is used in the proof of the next theorem.

Theorem 5.4.1. All independent set-based coarse-grid selection algorithms given the same initial

weights and using the same selection neighborhood, selection criterion based on (5.2), and weight

update heuristics as described above select identical coarse grids.

Proof. Let c be the vertices in N 2s
i satisfying the conditions for D in some arbitrary iteration.

Suppose assigning vertices c1 ⊂ c to the C-point set leads to wi > wj for all j ∈ N s
i . Also suppose

assigning c2 ⊂ c, c1 6= c2, to the C-point set leads to the existence of some j ∈ N s
i such that wj > wk

for all k ∈ N s
j .

For both conditions to be true, one or both of the following cases must be satisfied.

1. The value of wi is smaller when c2 is added to the C-point set than when c1 is added. For this

case, it must be true that |c2 ∩N
s
i | > |c1 ∩N

s
i |.

2. The value of wj is larger when c2 is added to the C-point set than when c1 is added. For this

case, it must be true that |c2 ∩N s
j | < |c1 ∩N s

j |.

Case 1 creates a contradiction. If |c2 ∩ N s
i | > |c1 ∩ N s

i |, then (c \ c1) ∩ N s
i 6= ∅. Following the

assignment of the vertices in c1 to the C-point set, there remains some k ∈ N s
i that is also in c.

Therefore, wk > wi, contradicting the first assumed condition.

Case 2 is similarly impossible. If |c2 ∩ N s
j | < |c1 ∩ N s

j |, then (c \ c2) ∩ N s
j 6= ∅. Following the

assignment of the vertices in c2 to the C-point set, there remains some k ∈ N s
j that is also in c.

Therefore, wk > wj , contradicting the second assumed condition.

Both cases are impossible, so the order of C-point selection within the selection neighborhood

of each vertex is invariant. Combined with Lemma 5.4.2 as the base case, this proves by induction

the invariance of coarse-grid selection for all algorithms using identical selection conditions.

Remark 5.4.1. CLJP and CLJP-c use the distance-one neighborhood as the selection neighborhood,

(5.1) as the selection criterion, and the weight update heuristics in Algorithm 3.4. Given the same

initial weights, all algorithms based on the parameters utilized by CLJP and CLJP-c select identical

coarse grids.

Theorem 5.4.1 is an important result about the nature of coarse grids selected by general in-

dependent set-based algorithms. This information enables the design and implementation of new

algorithms that yield identical coarse grids using different and possibly more efficient techniques.
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5.4.2 Bucket Sorted Independent Sets Algorithm

The BSIS algorithm creates a bucket data structure enabling a search for new C-points without

individually scanning each vertex and associated edges. Figure 5.1 illustrates the bucket data struc-

ture. The number of buckets in the data structure is maxi∈S |ST
i | times the number of colors in

the graph. That is, each possible weight in S has its own bucket. The vertices are distributed to

the appropriate buckets during the setup of the coarse-grid selection algorithm, where the bucket

of a newly placed vertex depends on the number of vertices it strongly influences and its color. For

example, Vertex 14 strongly influences six vertices and is black. Therefore, it is placed into the black

bucket in the sixth group of buckets. More notably, the vertices in a bucket form an independent

set (e.g., vertices 4, 16, and 21).

In each iteration, the non-empty bucket with largest weight forms D (see Corollary 5.2.2). These

vertices are assigned to the C-point set and removed from the data structure. Vertex weight updates

lead to corresponding updates to the data structure, and new F -points are removed from the data

structure. These operations continue until all buckets are empty, at which point the coarse-grid

selection is complete. Algorithms 5.3, 5.4, and 5.5 outline the operations discussed above.

Algorithm 5.3 BSIS Data Structure Setup

BSIS-Setup(S) {

1: for all i ∈ V do
2: bucketID← (wi − 1) · numColors + colori

3: bucket[bucketID].Insert(i)
4: end for

}

Algorithm 5.4 Independent Set Selection

BSIS-Independent-Set-Selection(S) {

1: return non-empty bucket with largest bucketID

}

Algorithm 5.5 BSIS Weight Update

BSIS-Weight-Update(S) {

1: bucketID← (wi − 1) · numColors + colori

2: bucket[bucketID].Remove(i)
3: bucket[bucketID− numColors].Insert(i)

}

Figure 5.2 illustrates the graph and data structure following the first iteration of the algorithm.

Vertex 10 has become a C-point and its neighbors weights have been updated. Vertices assigned to
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Figure 5.1: The BSIS data structure.
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Figure 5.2: The BSIS data structure after selecting the first C-point (Vertex 10). The weights of
neighbors of the new C-point are updated. Some neighbors become F -points and are removed from
the data structure. Vertices removed from the data structure are highlighted with a red ring in the
graph, while other neighbors are moved to new locations in the data structure and are highlighted
(to help in reading the figure) in the data structure with a red box.

F or C are removed from the data structure and other affected vertices are moved to new locations

in the data structure. Such vertices are highlighted in red.

The weight update routine described in Section 5.3 is very expensive in this context because

some iterations of BSIS select few C-points. For a graph with a large number of colors, BSIS may

execute dozens or hundreds of low-cost iterations to select a coarse grid. Recall the weight update

routine described loops through all unassigned vertices each time it is called, so when it is run by

BSIS, work is done on many unaffected vertices, which is computationally inefficient.

The largest factor in the cost of the weight update results from searching for the second type

of weight update in Algorithm 5.2, which is done by looping through all unassigned vertices since

a new C-point cannot easily determine which vertices it strongly influences in a CSR matrix. It is

less expensive in this situation to construct the transpose of S than to search the entire graph in
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each iteration. In ST , a C-point quickly determines which vertices it influences and “paints” them.

The algorithm then loops through all painted vertices and determines if any are neighbors. This is

a simple solution that has a dramatic effect on the performance of BSIS, although the update cost

remains approximately equivalent to the cost in CLJP-c. Chapter 7 describes plans for continued

investigation into decreasing the cost of weight update in coarsening algorithms.

5.5 Weight Update Aggregation

Whenever a vertex weight is updated, BSIS moves the corresponding vertex to a new location in the

data structure. During the selection of the coarse grid, the cost of the updates to the data structure

is non-trivial and, as shown in this section, unnecessary.

Only one bucket in the data is touched during the C-point selection step: the largest weight

non-empty bucket in the data structure. Other buckets are subsequently affected by the weight

updates resulting from new C-point assignments. A different approach is possible, however, since

the only bucket that must contain the correct vertices is the one from which C-points are selected.

To save cost, we suggest a lazy approach based on aggregating the cost of the updating vertex

weights. Rather than investing computation into maintaining accuracy in the data structure, a less

expensive mechanism to test if a vertex is in the correct location is provided. When a weight is

updated, the vertex is not moved until it is found in the bucket being used as the new independent

set D.

Figure 5.3 depicts the data structure after the first set of C-points is selected. Rather than

moving vertices to new buckets, the method now keeps them in the same location and only moves

them when necessary. As shown in Section 5.6, aggregation of the weight updates leads to significant

savings in computational cost.

5.6 Experimental Results

To demonstrate BSIS, the algorithm is compared with CLJP-c. The test problem is the 3D 7-point

Laplacian on a structured grid:

−∆u = 0 on Ω (Ω = (0, 1)3), (5.3)

u = 0 on ∂Ω.
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Figure 5.3: The BSIS data structure after selecting the first C-point (Vertex 10) with aggregate
weight updates.
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Figure 5.4: Coarse-grid selection times using BSIS with aggregate weight update, standard BSIS,
and CLJP-c on the 7-point Laplacian.

A 7-point Laplacian is selected since it is a common initial test problem and structured problems

often lead to the largest operator complexities for coarsening algorithms satisfying heuristic H1. By

creating larger operator complexities, the algorithms are forced to traverse more edges in the graph,

leading to more work.

Timing data for the selection of all coarse grids in the hierarchy is reported. This time includes the

cost for all parts of the algorithms, including the graph coloring phase. AMG solve phase information

is not reported since the algorithms produce identical coarse grids and since information on solve

phase performance for AMG with CLJP-c is documented in [2, 3].

The smallest problem is a 30× 30× 30 grid. Subsequent problems are grids of size 603, 903, up

to 2103. The largest problem is 343 times larger than the smallest problem and contains more than

nine million degrees of freedom.

Results for the experiment are presented in Figure 5.4. BSIS completes coarse-grid construction

in less time than CLJP-c in every case, and BSIS with aggregate weight update performs significantly

better than standard BSIS. For the largest problems BSIS is approximately 17% cheaper than CLJP-

c. BSIS with aggregate weight updates is 23% cheaper on the largest problems. The benefit is

magnified, relative to CLJP-c, for the smaller problems.

Experiment (5.3) demonstrates the effectiveness and competitiveness of the bucket technique.

Increased efficiency for the BSIS algorithm is anticipated through further research. Furthermore,
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the methods and concepts in this research are also applicable to other coarsening algorithms and

possibly to other elements in the AMG setup phase.

5.7 BSIS Variants

The ideas developed in this chapter are applicable to other coarsening algorithms that utilize a

graph coloring step, such as color-based methods designed to satisfy heuristic H1′. The PMIS-c1

algorithm is expected to benefit from BSIS and is expected to perform naturally in parallel since

vertex weights are not updated in PMIS.

5.8 Parallelizing BSIS

Using BSIS in a parallel algorithm presents challenges because the parallelism in BSIS is very fine-

grained. Its elegance and potential to greatly improve the efficiency of coarse-grid selection motivates

the development of parallel algorithms incorporating BSIS. Several alternatives are explored in this

section.

The first idea is called the boundary painting method and takes advantage of the invariance

between coarse grids selected by BSIS and CLJP-c. The idea is to use BSIS to select as many of

the interior C-points as possible before doing any communication with neighboring processors. All

vertices belonging to a processor are colored and inserted into the BSIS data structure. The processor

boundary vertices, however, are “painted”. If a painted vertex is in a set D in some iteration, then

the vertex is not added to C. It is instead removed from the data structure and its on-processor

neighbors are also painted. Figure 5.5 illustrates the first iteration of the painted boundary method

with weight update aggregation. The data structure shown is for the left domain. The first iteration

selects a new C-point, but does not select any painted vertices. In the second iteration, Vertex 22

is selected, but is already painted. Therefore, on-processor neighbors of Vertex 22 are also painted

(see Figure 5.6). The method finishes when the data structure is emptied of all vertices. The

product is now three disjoint sets: C and F , as usual, but also a set of painted vertices. The painted

vertices are the vertices that cannot be assigned to the F or C set without communication with

another processor. The information is provided to CLJP-c, which handles the parallel portion of

the algorithm.

The painted boundary approach is ideal given large numbers of interior vertices, which can be

guaranteed on most problems for the fine grid. A side-effect of H1-based coarsening algorithms,
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Figure 5.5: The painted boundary method with aggregate weight updates following one iteration.
The data structure is for the left domain. Painted vertices are marked with a green ring in the graph
and a green box in the data structure. Vertices in the data structure that are half green and half
red are painted and also have had their weights updated.
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Figure 5.6: The painted boundary method with aggregate weight updates following the second
iteration. In this iteration a painted vertex was selected, leading to the painting of its on-processor
neighbors.
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however, is the creation of denser graphs on coarse levels. One solution is to use the painted

boundary method on fine levels and then switch to CLJP-c further along in the coarsening process.

The issue is a smaller concern for H1′-based coarsening using BSIS since these methods produce small

operator complexities that do not grow as the size of the problem is increased. In all cases, however,

the number of processor boundary vertices relative to the number of interior vertices increases as

the number of unknowns per processor decreases (e.g., on coarse levels). A few techniques may be

applicable in this situation. The easiest solution is to simply use CLJP-c, or some other coarsening

algorithm, on the coarser levels where few vertices are found. Although BSIS does not decrease in

cost at this point, the total cost on the levels when BSIS is not used is low due to low complexity of

coarse grids. A second approach is the application of a dynamic load balancing algorithm to increase

the number of vertices on a processor (and, thus, decrease communication costs). If the number of

vertices per processor per level is maintained at a high enough level, BSIS is still valuable on coarse

grids. A third option is to replicate the operator matrix on processors, which leads to processors

doing more of the same work, but by avoiding communication. The second and third ideas are

similar in nature and both involve using dynamic load balancing techniques [23, 20, 21, 51, 22, 16].
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Chapter 6

Parallel Compatible Relaxation

In contrast to the coarsening algorithms discussed in Chapters 3 through 5, compatible relaxation

(CR) [8, 44, 10] does not utilize a strength of connection measure. CR methods instead use relaxation

to identify smooth error.

6.1 Intuition and Design

The type of compatible relaxation discussed in this chapter is concurrent CR [44]. To select a coarse

grid, smooth error is identified using CR iterations. An iteration of concurrent CR relaxes Ae = 0

at only F -points, while the unknowns at C-points are set to zero since CR assumes coarse-grid

correction completely annihilates error at these unknowns.

The CR iteration identifies and forms a candidate set composed of vertices where smooth error

is insufficiently damped. Independent sets are selected from candidate sets and added to the C-

point set. The quality of relaxation is quantified by the CR rate, ρcr. A small CR rate indicates

that relaxation on the F -points is effective, and that the coarsening process on that level should be

terminated. Algorithm 6.1 shows the CR algorithm from [10].

Theory states that there exists an “ideal” prolongation operator for a coarse grid with a fast

CR rate. The ideal prolongator, used with the corresponding coarse grid, produces a multigrid

solver with a small convergence factor [26, 27]. A major challenge in exploiting this theoretical

result is to find practical approximations to the ideal prolongator since the ideal prolongator is

typically impractical to construct and use. Moreover, it is not known under what conditions such

approximations produce fast AMG solve phases. Approximations to the ideal interpolation operator

are developed in [10] and use a trace-minimization method [56, 62] to determine the nonzero entries

in P given a structural sparse approximation of the ideal prolongator.

The contribution in this thesis is a parallel implementation of the CR algorithm targeting the

independent set algorithms used to select C-points from the candidate set (Line 10 of Algorithm 6.1).
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Algorithm 6.1 Compatible Relaxation

1: F ← Ω
2: C ← ∅
3: e(0) ← 1 + rand(0, 0.25)
4: α = 0.7
5: repeat

6: Perform ν CR iterations on F , where e
(0)
f ← 0 + (e(0))f

7: ρcr ←
‖e

(ν)
f

‖Aff

‖e
(ν−1)
f

‖Aff

8: if ρcr ≥ α then
9: Form candidate set

U ←

{

i :
|(e

(ν)
f )i|

‖e
(ν)
f ‖∞

≥ 1− ρcr

}

10: D ← Independent set of U
11: C ← C ∪D
12: F ← F \D
13: end if
14: until ρcr < α

Any algorithm in Figure 3.1, for instance, may be used to select the independent set. In the next

section, experimental results are presented for two parallel CR implementations: one with CLJP as

the independent set algorithm and one with PMIS as the independent set algorithm.

6.2 Experimental Results

The suite of experiments in Chapter 4 are now run using CR with CLJP (CR-CLJP) and CR with

PMIS (CR-PMIS). The relaxation method in both CR algorithms is a hybrid Jacobi/Gauss-Seidel

approach, where Gauss-Seidel is used in processor interiors and Jacobi is used across processor

boundaries. For brevity, only two experiments are presented. The results for CLJP and PMIS are

reproduced for comparison. See Appendix C and [3] for results and data for all experiments. In

each experiment, ν (Line 6 of Algorithm 6.1) is five.

3D 7-point Laplacian

Recall the 3D Laplacian test problem:

−∆u = 0 on Ω (Ω = (0, 1)3), (6.1)

u = 0 on ∂Ω.
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As in Section 4.5.3, the problem is discretized with finite differences to yield the common 7-point

stencil. The problem is scaled to provide a 50× 50× 50 grid (125,000 unknowns) to each processor

for all trials. On 256 processors, the problem is on a 400× 400 × 200 grid, resulting in 32 million

unknowns in the largest trial. The results for normalized setup time, convergence factor, operator

complexity, and work per digit-of-accuracy are given in Figure 6.1.

It is not surprising that the CR methods exhibit similar performance compared to the correspond-

ing independent set-based coarsening algorithms. The convergence factors, operator complexities,

and work per digit-of-accuracy are similar for each pair of methods.

The difference is in the normalized setup times. The setup times for both CR methods grow more

slowly as the number of processors is increased than for the corresponding independent set-based

methods. In CR, the coarsening process typically terminates before CLJP and PMIS terminate since

CR determines when relaxation is sufficiently fast in order to require another level of coarse-grid

correction. In some cases, the coarsest grid selected by CR is large compared to the other methods

saving time because the coarsest levels require the greatest amount of communication relative to

computation.

Tower plots for the four methods are shown in Figure 6.2. The towers are visually quite similar,

but the number of levels selected by the CR methods is slightly smaller.

3D Unstructured Laplacian

In this section, results are reported for the Laplacian problem (6.1) discretized on an unstructured

mesh by the finite element method. The problem on a single processor contains approximately

211,000 unknowns. The largest problem is on 512 processors and has approximately 100 million

unknowns, which gives an average of 198,000 unknowns per processor. The partition size data

for this problem is shown in Figure 4.16. Normalized setup times, convergence factors, operator

complexities, and work per digit-of-accuracy are reported in Figure 6.3.

As before, correlations exist between CR-CLJP and CLJP and between CR-PMIS and PMIS. CR

methods select good coarse grids for problems where the strength matrix provided to independent

set-based algorithms is inaccurate. However, for the Laplacian problems tested in this section the

strength of connection measure is sufficient.

Figure 6.4 displays the tower plots for this experiment. The towers are similar for the correlated

methods, but once again, CR selects fewer levels in both cases.

The purpose of the experiments in this section is to showcase properties of early parallel CR
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Figure 6.1: Results for the scaled 7-point Laplacian problem. The legend from the first plot applies
to all four plots.
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Figure 6.2: Tower plots for the 7-point Laplacian scaled problem. The towers shown are for the 512
processor trials. Notice the scale is not the same in each plot.

methods. To realize the full potential of CR methods, new prolongation operators are needed.

As prolongation techniques advance, CR methods become applicable to a larger set of problems,

including problems where strength of connection-based methods currently do not produce high-

quality coarse grids.
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Figure 6.3: Results for the 3D unstructured Laplacian scaled problem. The legend from the first
plot applies to all four plots.
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Figure 6.4: Tower plots for the 3D unstructured Laplacian scaled problem. The towers shown are
for the 256 processor trials.

87



Chapter 7

Conclusions

This thesis focuses on the problem of coarse-grid selection for parallel algebraic multigrid and makes

positive contributions by examining parallel coarse-grid selection from several perspectives. Follow-

ing a review of the major contributions in the thesis, several future directions for parallel AMG are

discussed.

7.1 Contributions

Analysis of CLJP. Differences in random augmentations given to vertices during CLJP initializa-

tion lead to large differences in the coarse grids produced. Analysis of random augmentations

in Chapter 4 provides insight into the effects of applying random numbers to create parallelism.

The results presented for modest sized problems demonstrate CLJP selects coarse grids much

larger than those selected by RS. CLJP is, however, capable of producing identical coarse

grids, which is the basis of CLJP-c.

Modification of CLJP to select with structure. The poor performance of CLJP on some types

of problems results from its application of random augmentations to vertex weights. This the-

sis presents an algorithm called CLJP in Color (CLJP-c) in Chapter 4 that utilizes a different

initial vertex weight to influence the method to select better coarse grids. The algorithm pro-

duces a graph coloring that is used while assigning initial vertex weights. Although coloring the

graph requires more work than producing random weight augmentations, the savings outweigh

the costs. For targeted problems, CLJP-c demonstrates large improvements in performance

over CLJP.

Extension to H1′ algorithms: PMIS-c1 and PMIS-c2. The PMIS coarsening algorithm is the

H1′ counterpart to CLJP. The ideas used to produce CLJP-c are also applied to PMIS in Chap-

ter 4. The direct application of the technique leads to PMIS-c1.
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The PMIS algorithm selects a converse dominating set and, given an appropriate set of random

weight augmentations, selects a converse dominating set with the smallest number of vertices

possible. In such a coarse grid, most C-points are three hops from their nearest C-point

neighbors. PMIS-c2 is designed to produce a coarse grid that exploits this distance by using

a distance-two coloring routine rather than the usual graph coloring algorithm.

Parallel compatible relaxation methods. Compatible relaxation (CR) methods select coarse

grids that are “compatible” with the relaxation method. The relaxation method is used to

identify smooth error and then select a coarse grid to accurately represent that error. The CR

approach is advantageous since smooth error is defined based on the relaxation method. The

contribution in this thesis to CR research is a parallel algorithm in Chapter 6.

Extensive experimental results. Several experiments are executed using the coarsening algo-

rithms discussed in this thesis. This experimental collection constitutes the single largest set

of published experiments for the coarsening problem. A set of results with substantial amounts

of data is presented in Chapter 4, with additional experiments in Chapters 5 and 6. It is im-

practical to present all experimental data, due to its size, so Appendix C contains more data

on the experiments in tabular form.

Novel analysis tools. In addition to using global measures to study the performance of the setup

phase, new tools are used to aid in analysis and understanding of coarsening algorithms. View-

ing the progress of a coarsening algorithm on a per level basis is useful for gaining insight into

how the algorithm coarsens during different parts of the process. The tower plots in Chapter 4

offer a view of the grid and operator complexities produced on each level. Throughout this

research, visualization tools provide insight into the coarsening properties of the algorithms

studied.

Improved search for coarse-grid selection. Independent set-based algorithms select coarse grids

by first setting up data structures, coloring the graph (if applicable), and initializing weights.

Next, independent sets are selected, followed by an update to vertex weights. Independent set

selection determines new C-points, whereas vertex weight updates determine new F -points.

Independent sets are selected by searching the graph for vertices satisfying (5.1). The research

that produces CLJP-c and related algorithms enables the development of a more efficient

search step for coarsening. By keeping vertices sorted in buckets, search is executed without

the need for weight comparisons between adjacent vertices. The BSIS algorithm presented in
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Chapter 5 employs this bucket method to select coarse grids based on heuristic H1.

Invariance in coarse-grid selection. Theoretical results are presented in Chapter 5 proving all

algorithms using generalized conditions select identical coarse grids, given the same weights.

The result is both powerful and useful because it creates opportunities to develop more efficient

coarse-grid selection algorithms without changing the results of the coarsening.

BSIS update aggregation. The bucket data structure used by BSIS must be updated as vertex

weights change. Standard BSIS updates the data structure following any weight update,

summing to significant cost over the total coarsening process. It is observed in this thesis

that accuracy of the data structure is not altogether necessary. Rather, BSIS only needs to

be capable of determining which vertices are in the proper location in the data structure.

Developed in Chapter 5, aggregate weight update takes a lazy approach to updating the data

structure and puts off doing work until required. Vertices are moved to the correct location

only when they are in the non-empty bucket with largest weight (i.e., the bucket containing

vertices to be added to C), yielding large performance gains over the original BSIS algorithm,

which is already a large improvement over CLJP-c.

The experimental results presented show more than 15% gains in BSIS over CLJP-c, and BSIS

with aggregate weight update exhibits nearly 25% reduction in cost over CLJP-c.

7.2 Future Work

The algorithms developed and theory established in this thesis form a base for further research.

Several possible future directions are listed below.

Algorithmic improvements to vertex update. Updating vertex weights is a significant source

of computational cost in coarse-grid selection, and improvements made to update routines are

certain to contribute to the efficiency of coarse-grid selection algorithms. The search routines

in coarse-grid selection are studied in Chapter 5, and the improvements made and insight

gained are applicable to this problem.

Apply lessons learned to prolongator construction algorithms. Prolongation and coarse-grid

selection are closely coupled processes. Traditional prolongators depend on H1 or H1′, so many

of the techniques in use share similarities. Advances made in developing better vertex weight

update algorithms are applicable to prolongator construction.
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Parallel BSIS (in preparation). The performance gains observed when using BSIS motivate fur-

ther investigation into parallel coarse-grid selection with BSIS. Preliminary results are encour-

aging.

Combined coarsening-prolongation algorithm. Coarse-grid selection and prolongator construc-

tion use the same graph as input. Furthermore, both rely on many of the same graph traversals.

These processes, however, are decoupled in implementation. The advantages of using a sin-

gle algorithm to coarsen and construct the prolongator simultaneously include avoiding the

traversal of the graph multiple times for the same information and having a coarsening routine

that is aware of the impact to operator complexity as it selects C-points.

Continue bringing graph algorithm perspective to the problem. The study of coarse-grid

selection as a combinatorial problem provides insight that is otherwise potentially overlooked.

Combinatorial scientific computing is a thriving field, and research from other areas may pro-

vide solutions for AMG. Graph coloring is particularly closely related to coarse-grid selection,

but other areas, such as matrix ordering for sparse direct methods [33, 34, 46], also provide

insight.

Design for new architectures. Parallel architectures are currently undergoing a transformation.

Within the last few years, physical and power constraints have forced the architecture industry

to increase desktop computing power through the use of new designs. Multi-core technology

and the Cell architecture have both appeared in the commercial market in the last seven

years [35]. Although the traditional approach in scientific computing is to run a single pro-

cess per processor, new parallel algorithms target thread-level parallelism as multi-core chips

become more pervasive. The study of algorithm design for multi-core architectures is a timely

pursuit for AMG development.

Machine learning. The possibility of applying machine learning to a number of problems in AMG

exists. Strength threshold θ, for example, is often 0.25 unless a cause for change is perceived.

Finding the optimal setting for θ is largely unstudied and differs for many input matrices.

Similar opportunities exist for smoother parameters or in selecting a coarsening algorithm.

The sheer number of possibilities is intimidating, but for many AMG parameters, machine

learning is a potentially beneficial approach.

Dynamic load balancing. As a multigrid cycle progresses to coarser levels, the number of un-

knowns per processor decreases. Consequently, the number of processor boundary unknowns
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increases relative to the number of interior unknowns, leading to increased communication

relative to computation. Coarse-grid selection is affected since each iteration of CLJP, CLJP-

c, PMIS, etc., is followed by a communication step. The study of dynamic load balancing

is active and offers the potential of significantly cutting communication costs. Through data

migration or data replication, the time needed on coarser levels in AMG (for both the setup

phase and solve phase) is expected to decrease.

7.3 Closing Remarks

The study of numerical linear solvers is an interesting and important endeavor, and parallel solvers

continue to be an important area of research. The solution of linear systems, such as those arising

from the discretization of partial differential equations, is an integral aspect of scientific computing.

AMG emerged around twenty years ago [48] and has since undergone rapid progress. The research

of coarse-grid selection algorithms for parallel AMG is relatively new, with CLJP being published

fewer than ten years before this thesis [18]. Since that time, many new coarsening algorithms have

been developed, and the contributions presented in this thesis add to the progress, bringing new

perspectives and ideas to the study of efficient parallel AMG.
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Appendix A

Geometric Multigrid and the

Two-Grid Operator

Geometric multigrid and the two-grid operator are introduced in this appendix. Stencil notation is

introduced followed by an overview of the concepts in multigrid. Finally, there is a discussion on

solving systems of PDEs with multigrid. See [14, 55] for a complete introduction.

Geometric multigrid functions on geometries based on regular grids, such as Cartesian grids.

Nested coarse grids implicitly exist for such geometries and are used to construct coarse-grid prob-

lems.

A.1 Stencil Notation

Many linear solvers operate globally on a matrix, but this is not the case in multigrid. Instead,

multigrid works locally on each grid point, which allows operators (i.e., matrices) in multigrid to be

defined using compact stencil operators.

A stencil defines an operator for the local interaction of each grid point, where stencils considered

in this thesis are of five-point or nine-point form. For example, a common five-point stencil is that

of the 2D Poisson equation,

−∆u = f, (A.1)

discretized using finite differences yielding the linear system Ax = b. The matrix A is alternatively

represented by the stencil produced through the discretization of (A.1) is

−∆ =
1

h2





−1
−1 4 −1

−1



 , (A.2)

where h is the distance between neighboring grid points. This stencil defines that an unknown xi,j
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corresponding to an interior point in row i, column j of the grid is defined as

−∆xi,j =
1

h2
(4xi,j − xi−1,j − xi+1,j − xi,j−1 − xi,j+1) .

A.2 Basic Concepts

Multigrid methods rely on two processes: relaxation (also called smoothing) and coarse-grid correc-

tion. The properties of these processes allow each to be successfully applied toward solving a linear

system by complementing the weaknesses of the other.

Relaxation quickly annihilates high-frequency error and leaves low-frequency error relatively

unchanged. The relaxation procedure in geometric multigrid and in algebraic multigrid is the same,

and the basic ideas of relaxation are developed in Section 2.1.1.

In geometric multigrid, low-frequency error corresponds to smooth error modes. That is, low-

frequency error is smooth and varies slowly locally (see Figure 2.3(a)). Smooth error is approximated

accurately with fewer degrees of freedom on the coarse grid, and a coarse-grid correction process

is applied to remove the low-frequency error. The concept of coarse-grid correction is discussed in

Section 2.1.2.

A.3 Components of Multigrid

A multigrid method is constructed from five fundamental components: the smoother, the coarsening

strategy, the coarse-grid operator, the restriction operator, and the prolongation operator. Each

component is discussed below, and common examples are given.

A.3.1 Smoothers

Smoothers are used to quickly dampen high-frequency errors and are also often called relaxation

methods. Any iterative method exhibiting this high-frequency damping property is a smoother.

There are several classes of smoothers, such as point smoothers, line smoothers, and block

smoothers. Point smoothers are the most basic and include methods like weighted-Jacobi iteration

and Gauss-Seidel iteration.
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A.3.2 Coarsening Strategy

The coarse grids geometric multigrid uses largely depend on the problem to be solved. Standard

coarsening doubles the distance between degrees of freedom. That is, if h is the distance between

unknowns on the fine grid, then 2h is the distance between unknowns on the coarse grid. Figure 2.1

illustrates standard coarsening.

Standard coarsening is not always the most effective strategy. Anisotropic problems have much

stronger coupling between the grid points in one direction than in another. For example,

−uxx − ǫuyy = f (A.3)

is anisotropic when 0 < ǫ ≪ 1. Standard coarsening is ineffective in this case, and multigrid

converges more quickly if semi-coarsening is used. By coarsening only in directions that are strongly

connected, coarse-grid correction accurately captures the smooth error of (A.3).

Other coarsening strategies are important in practice, but the remainder of this introduction

assumes standard coarsening is used.

A.3.3 Restriction

Restriction operators transfer residuals to the next coarse grid. In stencil notation the restriction

operator is denoted by R.

Common restriction operators are injection, full weighting, and half weighting. Injection is the

simplest restriction technique. In injection, a coarse-grid point has the same value on both the fine

and coarse grid. Although this restriction is simple, it typically does not represent the residual well

on the coarse grid.

Full weighting restriction is more commonly used and in general, works more effectively. For full

weighting,

R =
1

16





1 2 1
2 4 2
1 2 1





2h

h

, (A.4)

which computes the value at a coarse-grid point with a weighted average of fine points around it.

In full weighting, the value of coarse-grid points are more indicative of the residual on the fine grid.
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Figure A.1: Bilinear interpolation for each of four points. A point on the fine grid relates to the
coarse grid in one of four ways. Each figure illustrates one of these situations and the weighting
for the prolongation. Coarse-grid points are denoted as filled circles, and fine-grid points are empty
circles. Notice the relationship between these weights and the prolongation operator (A.5).

A.3.4 Prolongation

Prolongation is the opposite process to restriction. It transfers a vector onto the next fine grid.

Prolongation can in some cases be called interpolation. The prolongation operator is denoted by P .

For two-dimensional grids, a common prolongation operator is the bilinear interpolation operator,

P =
1

4





1 2 1
2 4 2
1 2 1





h

2h

, (A.5)

which is a scaled transpose of full weighting. Fine-grid points are assigned averages of the adjacent

coarse-grid points. Bilinear interpolation is illustrated in Figure A.1.

A.3.5 Coarse-Grid Operator

To solve the defect equation with coarse-grid correction a coarse-grid operator must first be selected.

One possibility is to re-discretize the original problem on the coarse grid. A common alternative is

the Galerkin operator,

AH = RAhP, (A.6)

where Ah and AH are the fine-grid matrix and coarse-grid matrix, respectively. The Galerkin

operator has several advantages making it attractive for use as the coarse-grid operator. One ad-

vantage is a natural averaging of the coefficients, making it particularly appropriate for problems

with discontinuous coefficients or variable coefficients [57].

The Galerkin operator also has some disadvantages. In some situations, implementing the

Galerkin operator proves more difficult and inappropriate than rediscretizing the system. Also,
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the Galerkin product tends to “enlarge” the stencil. That is, a five-point stencil on the fine grid in

two dimensions tends to become a nine-point stencil on coarse grids when the Galerkin coarse-grid

operator is used [55].

In practice, both the Galerkin operator and the operator resulting from rediscretizing the system

are commonly used.

A.4 Assembling the Two-Grid Operator

Individual components of multigrid are described in Section A.3. In this section those components

are assembled into a simple two-grid cycle, and an expression representing the two-grid cycle is

derived. One sweep of a two-grid cycle consists of three steps: presmoothing, coarse-grid correction,

and postsmoothing.

A.4.1 Presmoothing

The first step of a two-grid cycle is to smooth fine-grid points with ν1 passes of the relaxation method.

As discussed in Section A.2, a number of different smoothers are available to use. Presmoothing is

expressed as

x̂k
1 = Sν1

h xk + c̃1, (A.7)

where Sh is the iteration matrix and c̃1 is a vector depending only on the right-hand side, the

splitting of A, and ν1 (see Section 2.1.1).

A.4.2 Coarse-Grid Correction

The second step of the two-grid method is coarse-grid correction. This starts by calculating the

residual,

rh = b−Ahx̂k
1 , (A.8)

which is then transferred to the coarse grid using the restriction operator, producing the coarse-level

residual:

rH = Rrh. (A.9)

Following restriction, the defect equation on the coarse grid,

AHeH = rH , (A.10)
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is solved by a direct method. The coarse-level error eH is interpolated to the fine grid to yield the

fine-level error:

eh = PeH . (A.11)

Finally, the approximate solution on the fine grid is updated by computing

x̂k
2 = x̂k

1 + eh. (A.12)

By combining the results from (A.8) through (A.12), a single operator representing coarse-grid

correction is derived. This coarse-grid operator is assembled starting with (A.12) and substituting

the right-hand sides of (A.8) through (A.11),

x̂k
2 = x̂k

1 + PA−1
H R(b−Ahx̂k

1)

= (Ih − PA−1
H RAh)x̂k

1 + PA−1
H Rb, (A.13)

where Ih is the identity operator. Letting KH
h = (Ih − PA−1

H RAh) and ĉ = PA−1
H Rb this becomes

x̂k
2 = KH

h x̂k
1 + ĉ, (A.14)

where KH
h is the coarse-grid operator.

A.4.3 Postsmoothing

The two-grid cycle finishes with ν2 sweeps of the smoother on the fine grid. Postsmoothing is

mathematically identical to presmoothing. Note that the same smoothing operator (Sh) has been

used here because typically presmoothing and postsmoothing are done with the same smoother.

Therefore, postsmoothing is expressed as

xk+1 = Sν2

h x̂k
2 + c̃2. (A.15)

A.4.4 Two-Grid Operator

The expressions for presmoothing, coarse-grid correction, and postsmoothing are now combined to

form the two-grid operator, starting with the expression for postsmoothing in (A.15). Replacing x̂k
2
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from (A.15) with the right side of (A.14) yields

xk+1 = Sν2

h (KH
h x̂k

1 + ĉ) + c̃2. (A.16)

The presmoothing expression (A.7) defines x̂k
1 . Substitution gives

xk+1 = Sν2

h [KH
h (Sν1

h xk + c̃1) + ĉ] + c̃2. (A.17)

Let c̄ = Sν2

h KH
h c̃1 + Sν2

h ĉ + c̃2 and MH
h = Sν2

h KH
h Sν1

h , reducing the two-grid cycle to the form of a

stationary iterative method,

xk+1 = MH
h xk + c̄, (A.18)

where c̄ depends only on the operators and the right-hand side (i.e., c̄ is a constant term). The

operator MH
h is the two-grid operator.

Significance of the two-grid operator

The two-grid operator is the foundation of a local Fourier analysis technique called two-grid analysis

(see Appendix B.3). Also, useful multigrid theory depends on the two-grid cycle. For instance,

if a two-grid method converges independent of h, then theory shows a W-cycle exhibits similar

convergence properties.

Convergence of the two-grid method depends only on MH
h . This is shown by starting with (A.18)

and subtracting the true solution from both sides:

u∗ − uk+1 = MH
h u∗ + c̄− (MH

h uk + c̄). (A.19)

Further manipulation yields ek+1 = MH
h ek. This is expressed for the error in any iteration as

ek = (MH
h )ke0. (A.20)

The magnitude of the error decreases in each iteration if and only if the spectral radius of MH
h is

less than one.
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Appendix B

Local Fourier Mode Analysis

Local mode analysis (LMA) is used to estimate the performance of smoothers and multigrid. LMA

replaces errors in an iteration with Fourier modes and derives a growth factor based on how effec-

tively the error modes are damped in each iteration. This growth factor is useful when the slowest

converging mode is known because it gives an upper bound on the decay rate for all modes.

A basic example demonstrating LMA is provided in Section B.1. In Section B.2, the procedure

for calculating a smoothing factor is shown. Two-grid analysis is introduced in Section B.3, and

LMA with different smoothers is discussed in Section B.4.

The concepts presented in this appendix are at a level appropriate to introduce LMA. For a more

complete introduction to LMA, see [58, 60, 61, 55].

B.1 Basic Idea

In this section, the effectiveness of solving linear systems Ax = b with stationary iterative methods

is analyzed. Stationary iterative methods split A into two matrices M and N such that

A = M −N. (B.1)

Further manipulation of the linear system yields

Mx = Nx + b. (B.2)

The solution of the linear system is a stationary point of the iterative method

Mxm+1 = Nxm + b, (B.3)

where the superscripts on x denote iteration number.
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Take for example the 2D Poisson equation, −∆u = f discretized by finite differences to yield the

linear equation

−xj+1,k − xj−1,k + 4xj,k − xj,k+1 − xj,k−1

h2
= bj,k (B.4)

for the unknown of the point in row j, column k of the grid. Furthermore, assume that this

discretization is to be solved using lexicographic Gauss-Seidel (GS-LEX). For GS-LEX, M is the

lower triangle with diagonal, and −N is the upper triangle without diagonal. For this analysis, only

the application of the solver on a single interior point of the grid is considered. The iteration for an

interior point becomes

xm+1
j,k =

1

4

(

xm
j+1,k + xm+1

j−1,k + xm
j,k+1 + xm+1

j,k−1

)

+
h2

4
(bj,k) . (B.5)

This iteration is manipulated to yield an error iteration. Define the error in iteration m + 1 as

em+1 = x∗−xm+1, where x∗ is the true solution. Subtracting the true solution iteration from (B.5)

yields

x∗ − xm+1
j,k =

1

4

(

x∗
j+1,k + x∗

j−1,k + x∗
j,k+1 + x∗

j,k−1

)

−
h2

4
(bj,k)

−
1

4

(

xm
j+1,k + xm+1

j−1,k + xm
j,k+1 + xm+1

j,k−1

)

+
h2

4
(bj,k) .

This expression simplifies to

em+1
j,k =

1

4

(

em
j+1,k + em+1

j−1,k + em
j,k+1 + em+1

j,k−1

)

. (B.6)

Equation (B.6) is an iterative expression of the error in the approximate solutions. Once again, the

premise of Fourier analysis is to replace the errors in an error iteration by Fourier modes, where the

form of a Fourier mode is

em
j,k = T (m)ei(jθ1+kθ2), (B.7)

where T (m) is the amplitude of the mode in the mth iteration. Substituting Fourier modes into

(B.6) gives

T (m + 1)ei(jθ1+kθ2) =
1

4

(

T (m)ei((j+1)θ1+kθ2) + T (m + 1)ei((j−1)θ1+kθ2) +

+ T (m)ei(jθ1+(k+1)θ2) + T (m + 1)ei(jθ1+(k−1)θ2)
)

. (B.8)
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To see the damping properties of the method, the change in the amplitude from iteration to iteration

is examined. This is done by transforming (B.8) into the form

T (m + 1) = S̃h(θ)T (m), (B.9)

where θ = (θ1, θ2). In this form, (B.8) becomes

T (m + 1) =

(

eiθ1 + eiθ2

4− e−iθ1 − e−iθ2

)

T (m), (B.10)

where

S̃h(θ) =
eiθ1 + eiθ2

4− e−iθ1 − e−iθ2
. (B.11)

|S̃h(θ)| is called an amplification factor for the mode θ, and S̃h is the symbol for the amplification

factor. By looking at the value of |S̃h(θ)| for different modes (different θ), the slowest modes to

be damped by the iterative method are discovered. The rate at which the slowest mode is damped

approximates the asymptotic convergence factor for solving the problem, where the initial guess

contains that error mode. Due to periodicity, only the modes from [−π, π) × [−π, π) need to be

examined to discover the mode with the slowest decay.

Figure B.1 shows the amplification factors for this example. Observe the maximum value of

|S̃h(θ)| is nearly one, meaning the corresponding mode is barely damped from one iteration to the

next, so convergence is extremely slow.

B.2 Smoothing Analysis

Smoothing analysis is used for estimating the convergence factor of multigrid. An important concept

in LMA is the distinction between low-frequency modes and high-frequency modes. These definitions

are made on the domain [−π, π)× [−π, π). Low-frequency modes are defined as

θ ∈ T low :=
[

−
π

2
,
π

2

)

×
[

−
π

2
,
π

2

)

. (B.12)

The high-frequency modes lie in the remainder of the domain. That is,

θ ∈ T high := [−π, π)
∖[

−
π

2
,
π

2

)

× [−π, π)
∖[

−
π

2
,
π

2

)

. (B.13)
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Figure B.1: Fourier analysis of GS-LEX applied to Poisson’s equation.

Figure B.2 illustrates the high-frequency and low-frequency domains. Note that these definitions

are for full coarsening. In different coarsening strategies the definitions of high- and low-frequency

modes changes.

Smoothing analysis works by considering the damping effects of a smoother on high-frequency

modes while assuming all low-frequency error are annihilated by coarse-grid correction. It also

assumes coarse-grid correction has no effect on high-frequency modes.

The result from smoothing analysis is the smoothing factor. The smoothing factor, µ, for the

smoothing operator Sh is defined as

µ(Sh) = sup{|S̃h(θ)| : θ ∈ T high}. (B.14)

Smoothing analysis for Poisson’s equation relaxed by GS-LEX is identical to the example from

Section B.1 except the values of S̃h(θ) for θ ∈ T low are discarded. This gives a smoothing factor

of 0.5 for this problem, which means the error is damped by one half in each multigrid cycle. The

results of smoothing analysis for the model problem are shown in Figure B.3.

B.3 Two-Grid Analysis

The information provided by smoothing analysis is a very rough estimate of convergence factor. A

better estimate is usually found by Fourier analysis on coarse-grid corrections, in addition to the
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Figure B.2: High- and low-frequency regions on [−π, π) × [−π, π). The low-frequency modes lie in
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Figure B.3: Smoothing analysis of GS-LEX applied to Poisson’s equation.
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smoothing steps. This type of analysis is called two-grid analysis.

Smoothing analysis seeks the amplification factor of the smoothing operator, Sh. Similarly, in

two-grid analysis, the amplification factor of the two-grid operator,

M2h
h = Sν2

h K2h
h Sν1

h , (B.15)

is calculated. The derivation of the two-grid operator is shown in Appendix A.4. The number of

presmoothing sweeps is ν1, and ν2 is the number of postsmoothing sweeps. K2h
h is the coarse-grid

operator,

K2h
h = Ih − PA−1

H RAh, (B.16)

where Ih is the identity matrix.

Two-grid analysis proceeds by looking at groups of four modes on the fine grid that appear

identical on the coarse grid. That is, these four modes alias to the same mode on the coarse grid

because fewer modes are representable on the coarse grid. As explained in [55], these modes are of

the form

θ
(0,0) := (θ1, θ2), θ

(1,1) := (θ̄1, θ̄2), (B.17)

θ
(1,0) := (θ̄1, θ2), θ

(0,1) := (θ1, θ̄2),

θ̄i :=











θi + π if θi < 0,

θi − π if θi ≥ 0.

By looking at four modes at a time the symbols become 4× 4 as opposed to scalar, as in smoothing

analysis. The symbols of this form are denoted by typographic “hats” above the symbol. For

example, the symbol for the smoother used in two-grid is

Ŝh =



















S̃h(θ(0,0))

S̃h(θ(1,1))

S̃h(θ(1,0))

S̃h(θ(0,1))



















. (B.18)

Two-grid analysis involves finding the symbols Ŝν2

h (θ), K̂2h
h (θ), and Ŝν1

h (θ). Once that informa-

tion has been acquired, the maximum of M̂2h
h (θ) is found by testing various values of θ.

How to find the symbols of smoothing operators is shown in previous sections, leaving only
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K̂2h
h (θ) to discuss. As stated in [55], K̂2h

h (θ) is a 4× 4 matrix representing K2h
h :

K̂2h
h (θ) = Îh − P̂ (θ)(ÂH(2θ))−1R̂(θ)Âh(θ). (B.19)

For this presentation, it is not particularly important to understand exactly what each symbol

looks like. It is important to realize that two-grid analysis is simply the result of taking the two-grid

operator in Appendix A.4 and replacing each component with Fourier modes. This method gives

sharp estimates for the convergence factor of multigrid on some problems. Cases exist, however,

where two-grid analysis does not work particularly well. One way to obtain better results is to use

more than one level of coarse-grid correction in the analysis.

B.4 Using Other Smoothers

LMA is compatible with many smoothers. Doing the analysis with any smoother that uses a splitting

of the stencil in terms of a single point, such as GS-LEX or Jacobi smoothing, is straightforward.

Smoothers using a simple splitting are not the only popular options. Gauss-Seidel red-black

(GS-RB) is another commonly used smoother. It is possible to do LMA with GS-RB, and similar

smoothers like 4-COLOR smoothing, using a more complicated analysis. For a discussion on doing

LMA with GS-RB, see [55].

B.5 Computational LMA

Computational packages for conducting Fourier analysis [1, 59] provide multigrid users with powerful

tools. Computational LMA enables the determination of expected performance for many smoothers

to be quickly computed, which provides opportunities to save computation time by determining an

efficient multigrid configuration prior to solving the problem.
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Appendix C

Additional Experimental Results

The purpose of this appendix is to provide additional experimental data from the experiments in

Section 4.5. All data presented in the appendix appears in tabular form to provide interested parties

with numerical results. The tables contain information on the trials, the relative problem size for

each trial, absolute and relative grid and operator complexities, absolute and relative amounts of

work per digit-of-accuracy, convergence factors, absolute and relative setup times, and information

detailing the number of degrees of freedom and unknowns in the operator matrices on all levels for

selected trials.

C.1 Fixed-Size 3D 7-Point Laplacian

This section reports the results for experiments on a strongly scaled 7-point Laplacian problem. The

problem is defined as

−∆u = 0 on Ω (Ω = (0, 1)3), (C.1)

u = 0 on ∂Ω,

where the Laplacian is discretized using finite differences yielding the standard 7-point stencil. The

individual trials and problem sizes for each trial are listed in Table C.1. The domain in all trials is

a 128× 128× 128 grid, which gives approximately two million unknowns.

The data is organized into the following tables.
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Trial information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.1

Grid complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Table C.2

Relative grid complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.3

Operator complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.4

Relative operator complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.5

Amount of work per digit-of-accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Table C.6

Relative amount of work per digit-of-accuracy . . . . . . . . . . . . . . . . . . . . . . . . . Table C.7

Convergence factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.8

Setup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.9

Relative setup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.10

Level-by-level degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . .Tables C.11 and C.12

Level-by-level nonzeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tables C.13 and C.14

p 1 2 4 8 16 32 64 128 256
Relative n 1 1 1 1 1 1 1 1 1

Table C.1: Trials and relative trial sizes for the strongly scaled 7-point Laplacian. The number of
processors (p) is shown in the first row, and the number of unknowns (n) relative to the number of
unknowns in the smallest trial is shown in the second row. This problem is strongly scaled, meaning
the problem size is unchanged as the number of processors increases.

p 1 2 4 8 16 32 64 128 256

Falgout 1.64 1.64 1.64 1.64 1.65 1.65 1.65 1.66 1.68
CLJP 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44

CLJP-c 1.66 1.67 1.66 1.64 1.66 1.66 1.64 1.65 1.66
PMIS 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39
HMIS 1.60 1.60 1.59 1.59 1.59 1.59 1.59 1.58 1.58

PMIS-c1 1.59 1.58 1.58 1.59 1.58 1.58 1.59 1.58 1.58
PMIS-c2 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32
CR-CLJP 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44
CR-PMIS 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39

Table C.2: Grid complexities for the strongly scaled 7-point Laplacian.
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p 1 2 4 8 16 32 64 128 256

Falgout 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.02
CLJP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CLJP-c 1.00 1.01 1.00 0.99 1.00 1.00 0.99 1.00 1.00
PMIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HMIS 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99

PMIS-c1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PMIS-c2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CR-CLJP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CR-PMIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table C.3: Grid complexities for the strongly scaled 7-point Laplacian relative to the single processor
grid complexities.

p 1 2 4 8 16 32 64 128 256

Falgout 5.21 5.13 5.25 5.21 5.30 5.40 5.55 5.85 6.42
CLJP 27.95 27.72 27.67 27.92 27.95 27.70 27.88 27.78 27.88

CLJP-c 5.15 5.75 5.35 4.66 5.31 5.24 4.46 4.94 5.25
PMIS 2.36 2.36 2.36 2.36 2.37 2.36 2.37 2.36 2.37
HMIS 2.90 2.87 2.86 2.85 2.82 2.79 2.78 2.74 2.72

PMIS-c1 2.77 2.73 2.75 2.80 2.74 2.74 2.78 2.75 2.72
PMIS-c2 2.03 2.03 2.04 2.04 2.04 2.04 2.05 2.06 2.07
CR-CLJP 28.37 28.16 28.24 28.04 28.05 28.07 28.09 27.92 28.09
CR-PMIS 2.36 2.36 2.36 2.36 2.37 2.36 2.37 2.37 2.37

Table C.4: Operator complexities for the strongly scaled 7-point Laplacian.

p 1 2 4 8 16 32 64 128 256

Falgout 1.00 0.98 1.01 1.00 1.02 1.04 1.07 1.12 1.23
CLJP 1.00 0.99 0.99 1.00 1.00 0.99 1.00 0.99 1.00

CLJP-c 1.00 1.12 1.04 0.90 1.03 1.02 0.87 0.96 1.02
PMIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HMIS 1.00 0.99 0.99 0.98 0.97 0.96 0.96 0.94 0.94

PMIS-c1 1.00 0.99 0.99 1.01 0.99 0.99 1.00 0.99 0.98
PMIS-c2 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02
CR-CLJP 1.00 0.99 1.00 0.99 0.99 0.99 0.99 0.98 0.99
CR-PMIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table C.5: Operator complexities for the strongly scaled 7-point Laplacian relative to the single
processor operator complexities.

109



p 1 2 4 8 16 32 64 128 256

Falgout 10.01 10.15 10.84 11.09 11.75 12.33 13.16 14.61 16.95
CLJP 92.34 91.97 93.60 95.77 97.26 96.90 96.44 100.71 101.60

CLJP-c 11.45 13.49 12.36 10.42 12.66 12.57 10.15 11.77 12.89
PMIS 49.71 49.80 52.27 52.63 53.33 54.41 52.92 51.78 53.43
HMIS 10.18 15.52 18.75 22.87 24.76 26.11 26.86 32.18 33.34

PMIS-c1 20.94 24.22 26.25 22.86 25.56 27.70 25.20 28.14 28.85
PMIS-c2 54.05 54.64 55.30 56.63 57.53 56.14 59.70 54.99 56.90
CR-CLJP 130.46 131.71 134.75 139.47 137.95 143.10 111.42 113.31 114.21
CR-PMIS 58.79 61.96 64.00 67.00 68.26 69.53 68.96 49.37 49.47

Table C.6: Amount of work per digit-of-accuracy for the strongly scaled 7-point Laplacian.

p 1 2 4 8 16 32 64 128 256

Falgout 1.00 1.01 1.08 1.11 1.17 1.23 1.31 1.46 1.69
CLJP 1.00 1.00 1.01 1.04 1.05 1.05 1.04 1.09 1.10

CLJP-c 1.00 1.18 1.08 0.91 1.11 1.10 0.89 1.03 1.13
PMIS 1.00 1.00 1.05 1.06 1.07 1.09 1.06 1.04 1.07
HMIS 1.00 1.52 1.84 2.25 2.43 2.56 2.64 3.16 3.27

PMIS-c1 1.00 1.16 1.25 1.09 1.22 1.32 1.20 1.34 1.38
PMIS-c2 1.00 1.01 1.02 1.05 1.06 1.04 1.10 1.02 1.05
CR-CLJP 1.00 1.01 1.03 1.07 1.06 1.10 0.85 0.87 0.88
CR-PMIS 1.00 1.05 1.09 1.14 1.16 1.18 1.17 0.84 0.84

Table C.7: Amount of work per digit-of-accuracy for the strongly scaled 7-point Laplacian relative
to single processor WPDA.

p 1 2 4 8 16 32 64 128 256

Falgout 0.09 0.10 0.11 0.11 0.13 0.13 0.14 0.16 0.17
CLJP 0.25 0.25 0.26 0.26 0.27 0.27 0.26 0.28 0.28

CLJP-c 0.13 0.14 0.14 0.13 0.14 0.15 0.13 0.14 0.15
PMIS 0.80∗ 0.80∗ 0.81∗ 0.81∗ 0.82∗ 0.82∗ 0.81∗ 0.81∗ 0.82∗

HMIS 0.27 0.43 0.49 0.56 0.59 0.61 0.62 0.68 0.69
PMIS-c1 0.54 0.60 0.62 0.57 0.61 0.63 0.60 0.64 0.65
PMIS-c2 0.84∗ 0.84∗ 0.84∗ 0.85∗ 0.85∗ 0.85∗ 0.85∗ 0.84∗ 0.85∗

CR-CLJP 0.37 0.37 0.38 0.40 0.39 0.41 0.31 0.32 0.32
CR-PMIS 0.83∗ 0.84∗ 0.84∗ 0.85∗ 0.85∗ 0.86∗ 0.85∗ 0.80∗ 0.80∗

Table C.8: Convergence factors for the strongly scaled 7-point Laplacian. Asterisks (*) denote trials
that did not converge to a relative residual smaller than 10−8 within 100 iterations.
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p 1 2 4 8 16 32 64 128 256

Falgout 91.01 98.74 53.06 25.73 16.71 11.50 9.54 9.44 12.01
CLJP 283.27 229.95 127.88 70.21 48.41 36.39 30.55 25.70 25.04

CLJP-c 94.86 107.32 53.39 23.25 16.12 10.61 6.03 6.27 7.59
PMIS 21.46 29.46 14.77 6.33 3.21 1.48 0.77 0.57 0.78
HMIS 43.11 67.94 33.10 13.52 6.71 2.81 1.24 0.72 0.84

PMIS-c1 39.88 65.96 33.07 13.95 7.00 3.15 1.53 0.96 0.91
PMIS-c2 24.57 24.80 12.78 5.77 2.95 1.50 0.87 0.71 0.82
CR-CLJP 433.54 304.93 167.82 90.04 58.59 42.26 33.93 26.98 25.60
CR-PMIS 40.36 38.99 19.77 8.78 4.41 2.02 0.99 0.75 0.95

Table C.9: Setup times in seconds for the strongly scaled 7-point Laplacian.

p 1 2 4 8 16 32 64 128 256

Falgout 1.00 1.08 0.58 0.28 0.18 0.13 0.10 0.10 0.13
CLJP 1.00 0.81 0.45 0.25 0.17 0.13 0.11 0.09 0.09

CLJP-c 1.00 1.13 0.56 0.25 0.17 0.11 0.06 0.07 0.08
PMIS 1.00 1.37 0.69 0.29 0.15 0.07 0.04 0.03 0.04
HMIS 1.00 1.58 0.77 0.31 0.16 0.07 0.03 0.02 0.02

PMIS-c1 1.00 1.65 0.83 0.35 0.18 0.08 0.04 0.02 0.02
PMIS-c2 1.00 1.01 0.52 0.24 0.12 0.06 0.04 0.03 0.03
CR-CLJP 1.00 0.70 0.39 0.21 0.14 0.10 0.08 0.06 0.06
CR-PMIS 1.00 0.97 0.49 0.22 0.11 0.05 0.02 0.02 0.02

Table C.10: Setup times for the strongly scaled 7-point Laplacian relative to single processor WPDA.
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C.2 Fixed-Size 3D Unstructured Laplacian

This section reports the results for experiments on a strongly scaled unstructured Laplacian problem.

The continuous problem is the same as Section C.1, except now the Laplacian is discretized using

finite elements on an unstructured mesh. The individual trials and problem size growth for each

trial are listed in Table C.15. The problem contains approximately 940,000 degrees of freedom in

all trials.

The data is organized into the following tables.

Trial information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.15

Grid complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Table C.16

Relative grid complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.17

Operator complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.18

Relative operator complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.19

Amount of work per digit-of-accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Table C.20

Relative amount of work per digit-of-accuracy . . . . . . . . . . . . . . . . . . . . . . . . Table C.21

Convergence factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.22

Setup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.23

Relative setup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.24

Level-by-level degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . .Tables C.25 and C.26

Level-by-level nonzeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tables C.27 and C.28

p 1 2 4 8 16 32 64 128 256 512
Relative n 1.00 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11

Table C.15: Trials and relative trial sizes for the strongly scaled 3D unstructured Laplacian. The
number of processors (p) is shown in the first row, and the number of unknowns (n) relative to
the number of unknowns in the smallest trial is shown in the second row. This problem is strongly
scaled, although the discretization package used marginally changed the problem size following the
first trial.
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p 1 2 4 8 16 32 64 128 256 512

Falgout 1.92 2.01 2.00 2.00 1.99 1.98 1.97 1.96 1.94 1.92
CLJP 1.70 1.79 1.79 1.80 1.80 1.79 1.79 1.80 1.79 1.80

CLJP-c 1.71 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81
PMIS 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23
HMIS 1.23 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25

PMIS-c1 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23
PMIS-c2 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23
CR-CLJP 1.70 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80
CR-PMIS 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.24

Table C.16: Grid complexities for the strongly scaled 3D unstructured Laplacian.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.05 1.04 1.04 1.04 1.03 1.03 1.02 1.01 1.00
CLJP 1.00 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05

CLJP-c 1.00 1.05 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
PMIS 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
HMIS 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02

PMIS-c1 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
PMIS-c2 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
CR-CLJP 1.00 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05
CR-PMIS 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Table C.17: Grid complexities for the strongly scaled 3D unstructured Laplacian relative to the
single processor grid complexities.

p 1 2 4 8 16 32 64 128 256 512

Falgout 6.56 7.97 8.09 8.08 8.23 8.29 8.28 8.35 8.36 8.29
CLJP 5.05 6.71 6.71 6.72 6.75 6.70 6.73 6.73 6.73 6.76

CLJP-c 5.26 7.08 7.08 7.11 7.11 7.13 7.13 7.14 7.24 7.27
PMIS 1.46 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47
HMIS 1.48 1.53 1.53 1.53 1.54 1.54 1.54 1.54 1.55 1.55

PMIS-c1 1.46 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47
PMIS-c2 1.46 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47
CR-CLJP 5.09 6.83 6.80 6.80 6.77 6.78 6.80 6.73 6.76 6.79
CR-PMIS 1.46 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.51

Table C.18: Operator complexities for the strongly scaled 3D unstructured Laplacian.

117



p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.22 1.23 1.23 1.25 1.26 1.26 1.27 1.27 1.26
CLJP 1.00 1.33 1.33 1.33 1.34 1.33 1.33 1.33 1.33 1.34

CLJP-c 1.00 1.35 1.35 1.35 1.35 1.35 1.36 1.36 1.38 1.38
PMIS 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
HMIS 1.00 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.05 1.05

PMIS-c1 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00
PMIS-c2 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
CR-CLJP 1.00 1.34 1.34 1.34 1.33 1.33 1.34 1.32 1.33 1.33
CR-PMIS 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.04

Table C.19: Operator complexities for the strongly scaled 3D unstructured Laplacian relative to the
single processor operator complexities.

p 1 2 4 8 16 32 64 128 256 512

Falgout 22.40 26.63 27.50 27.90 28.61 29.95 30.10 30.80 31.42 31.71
CLJP 18.17 23.32 23.36 23.99 24.36 24.48 24.89 24.97 25.13 25.52

CLJP-c 19.14 25.03 25.25 25.56 25.78 26.22 26.54 26.75 27.51 27.93
PMIS 26.22 26.82 28.15 27.11 27.39 28.50 27.00 27.82 29.39 29.19
HMIS 23.44 24.02 24.46 24.89 25.88 26.98 27.20 27.95 27.48 29.57

PMIS-c1 26.63 26.05 28.26 26.64 27.53 27.07 27.93 27.66 27.83 29.22
PMIS-c2 26.06 26.56 26.34 28.19 27.69 27.54 27.73 28.52 28.58 28.88
CR-CLJP 18.22 23.54 23.41 23.50 23.50 24.26 24.81 24.80 25.00 25.65
CR-PMIS 26.60 25.80 25.98 27.95 28.18 27.35 27.06 21.81 22.81 19.27

Table C.20: Amount of work per digit-of-accuracy for the strongly scaled 3D unstructured Laplacian.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.19 1.23 1.25 1.28 1.34 1.34 1.38 1.40 1.42
CLJP 1.00 1.28 1.29 1.32 1.34 1.35 1.37 1.37 1.38 1.40

CLJP-c 1.00 1.31 1.32 1.34 1.35 1.37 1.39 1.40 1.44 1.46
PMIS 1.00 1.02 1.07 1.03 1.04 1.09 1.03 1.06 1.12 1.11
HMIS 1.00 1.02 1.04 1.06 1.10 1.15 1.16 1.19 1.17 1.26

PMIS-c1 1.00 0.98 1.06 1.00 1.03 1.02 1.05 1.04 1.04 1.10
PMIS-c2 1.00 1.02 1.01 1.08 1.06 1.06 1.06 1.09 1.10 1.11
CR-CLJP 1.00 1.29 1.29 1.29 1.29 1.33 1.36 1.36 1.37 1.41
CR-PMIS 1.00 0.97 0.98 1.05 1.06 1.03 1.02 0.82 0.86 0.72

Table C.21: Amount of work per digit-of-accuracy for the strongly scaled 3D unstructured Laplacian
relative to single processor WPDA.
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p 1 2 4 8 16 32 64 128 256 512

Falgout 0.26 0.25 0.26 0.26 0.27 0.28 0.28 0.29 0.29 0.30
CLJP 0.28 0.27 0.27 0.28 0.28 0.28 0.29 0.29 0.29 0.30

CLJP-c 0.28 0.27 0.27 0.28 0.28 0.29 0.29 0.29 0.30 0.30
PMIS 0.77 0.78 0.79 0.78 0.78 0.79 0.78 0.78 0.79 0.79
HMIS 0.75 0.75 0.75 0.75 0.76 0.77 0.77 0.78 0.77 0.79

PMIS-c1 0.78 0.77 0.79 0.78 0.78 0.78 0.78 0.78 0.78 0.79
PMIS-c2 0.77 0.78 0.77 0.79 0.78 0.78 0.78 0.79 0.79 0.79
CR-CLJP 0.28 0.26 0.26 0.26 0.27 0.28 0.28 0.29 0.29 0.30
CR-PMIS 0.78 0.77 0.77 0.79 0.79 0.78 0.78 0.73 0.74 0.70

Table C.22: Convergence factors for the strongly scaled 3D unstructured Laplacian.

p 1 2 4 8 16 32 64 128 256 512

Falgout 56.74 63.20 35.21 18.57 14.37 10.42 7.02 5.91 7.33 8.38
CLJP 50.18 55.42 30.13 15.76 11.40 7.71 5.31 4.25 5.20 8.88

CLJP-c 54.60 58.84 32.25 17.10 12.07 8.24 5.98 4.86 5.28 7.34
PMIS 13.58 11.81 5.82 2.57 1.31 0.65 0.34 0.25 0.24 0.28
HMIS 14.92 12.85 6.33 2.80 1.43 0.70 0.38 0.27 0.26 0.36

PMIS-c1 16.13 12.96 6.46 2.90 1.52 0.78 0.47 0.34 0.34 0.57
PMIS-c2 17.97 13.89 6.77 3.04 1.59 0.83 0.49 0.35 0.34 0.36
CR-CLJP 79.49 76.66 40.49 20.54 13.62 8.93 5.76 4.47 6.19 12.70
CR-PMIS 24.57 18.17 8.66 3.84 1.91 0.93 0.47 0.38 0.37 0.54

Table C.23: Setup times in seconds for the strongly scaled 3D unstructured Laplacian.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.11 0.62 0.33 0.25 0.18 0.12 0.10 0.13 0.15
CLJP 1.00 1.10 0.60 0.31 0.23 0.15 0.11 0.08 0.10 0.18

CLJP-c 1.00 1.08 0.59 0.31 0.22 0.15 0.11 0.09 0.10 0.13
PMIS 1.00 0.87 0.43 0.19 0.10 0.05 0.03 0.02 0.02 0.02
HMIS 1.00 0.86 0.42 0.19 0.10 0.05 0.03 0.02 0.02 0.02

PMIS-c1 1.00 0.80 0.40 0.18 0.09 0.05 0.03 0.02 0.02 0.04
PMIS-c2 1.00 0.77 0.38 0.17 0.09 0.05 0.03 0.02 0.02 0.02
CR-CLJP 1.00 0.96 0.51 0.26 0.17 0.11 0.07 0.06 0.08 0.16
CR-PMIS 1.00 0.74 0.35 0.16 0.08 0.04 0.02 0.02 0.02 0.02

Table C.24: Setup times for the strongly scaled 3D unstructured Laplacian relative to single processor
setup times.
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C.3 Scaled 3D 7-Point Laplacian

This section reports the results for experiments on a weakly scaled 7-point Laplacian problem. The

continuous problem is the same as Section C.1, except now the problem is scaled to assign the same

number of unknowns to each processor for all trials. On one processor, the problem contains 125,000

unknowns. On 256 processors, the problem contains 32 million unknowns. The individual trials and

problem size growth for each trial are listed in Table C.29.

The data is organized into the following tables.

Trial information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.29

Grid complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Table C.30

Relative grid complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.31

Operator complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.32

Relative operator complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.33

Amount of work per digit-of-accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Table C.34

Relative amount of work per digit-of-accuracy . . . . . . . . . . . . . . . . . . . . . . . . Table C.35

Convergence factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.36

Setup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.37

Relative setup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.38

Level-by-level degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . .Tables C.39 and C.40

Level-by-level nonzeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tables C.41 and C.42

p 1 2 4 8 16 32 64 256 512
Relative n 1 2 4 8 16 32 64 256 512

Table C.29: Trials and relative trial sizes for the weakly scaled 3D 7-point Laplacian. The number
of processors (p) is shown in the first row, and the number of unknowns (n) relative to the number
of unknowns in the smallest trial is shown in the second row.

124



p 1 2 4 8 16 32 64 128 256 512

Falgout 1.65 1.65 1.65 1.65 1.65 1.65 1.65 – 1.65 –
CLJP 2.40 2.41 2.42 2.43 2.44 2.44 2.45 – 2.45 2.45

CLJP-c 1.64 1.64 1.64 1.64 1.64 1.64 1.64 – 1.64 1.64
PMIS 1.40 1.39 1.39 1.39 1.39 1.39 1.39 – 1.39 1.38
HMIS 1.60 1.60 1.59 1.59 1.59 1.59 1.59 – 1.59 1.59

PMIS-c1 1.59 1.59 1.59 1.59 1.59 1.59 1.59 – 1.59 1.58
PMIS-c2 1.33 1.33 1.32 1.32 1.32 1.32 1.31 – 1.31 1.31
CR-CLJP 2.40 2.42 2.43 2.44 2.44 2.44 2.45 – 2.45 2.46
CR-PMIS 1.40 1.39 1.39 1.39 1.39 1.39 1.39 – 1.39 1.39

Table C.30: Grid complexities for the weakly scaled 3D 7-point Laplacian.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 –
CLJP 1.00 1.01 1.01 1.02 1.02 1.02 1.02 – 1.02 1.02

CLJP-c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00
PMIS 1.00 1.00 1.00 1.00 0.99 0.99 0.99 – 0.99 0.99
HMIS 1.00 1.00 1.00 1.00 1.00 1.00 0.99 – 0.99 0.99

PMIS-c1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00
PMIS-c2 1.00 1.00 1.00 0.99 0.99 0.99 0.99 – 0.99 0.99
CR-CLJP 1.00 1.00 1.01 1.01 1.02 1.02 1.02 – 1.02 1.02
CR-PMIS 1.00 1.00 1.00 1.00 0.99 0.99 0.99 – 0.99 0.99

Table C.31: Grid complexities for the weakly scaled 3D 7-point Laplacian relative to the single
processor grid complexities.

p 1 2 4 8 16 32 64 128 256 512

Falgout 4.18 4.38 4.70 5.04 5.25 5.57 6.02 – 6.69 –
CLJP 19.83 21.56 23.82 26.32 27.41 28.76 30.33 – 32.13 33.05

CLJP-c 3.88 4.00 4.16 4.40 4.55 4.73 4.95 – 5.30 5.53
PMIS 2.32 2.34 2.35 2.36 2.36 2.37 2.37 – 2.38 2.38
HMIS 2.82 2.81 2.82 2.82 2.83 2.82 2.83 – 2.83 2.83

PMIS-c1 2.77 2.77 2.78 2.78 2.79 2.79 2.79 – 2.79 2.79
PMIS-c2 2.04 2.05 2.04 2.04 2.04 2.05 2.05 – 2.05 2.05
CR-CLJP 20.77 22.17 24.11 26.70 27.78 28.91 30.48 – 32.21 33.13
CR-PMIS 2.32 2.34 2.35 2.36 2.36 2.37 2.37 – 2.38 2.38

Table C.32: Operator complexities for the weakly scaled 3D 7-point Laplacian.
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p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.05 1.13 1.21 1.26 1.33 1.44 – 1.60 –
CLJP 1.00 1.09 1.20 1.33 1.38 1.45 1.53 – 1.62 1.67

CLJP-c 1.00 1.03 1.07 1.13 1.17 1.22 1.28 – 1.37 1.43
PMIS 1.00 1.01 1.01 1.02 1.02 1.02 1.02 – 1.02 1.02
HMIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00

PMIS-c1 1.00 1.00 1.00 1.00 1.00 1.01 1.01 – 1.01 1.01
PMIS-c2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00
CR-CLJP 1.00 1.07 1.16 1.29 1.34 1.39 1.47 – 1.55 1.59
CR-PMIS 1.00 1.01 1.01 1.02 1.02 1.02 1.02 – 1.02 1.03

Table C.33: Operator complexities for the weakly scaled 3D 7-point Laplacian relative to the single
processor operator complexities.

p 1 2 4 8 16 32 64 128 256 512

Falgout 6.15 7.01 8.44 10.20 11.25 13.05 16.06 – 21.27 –
CLJP 49.51 57.36 69.00 84.36 93.74 102.99 116.55 – 137.60 154.53

CLJP-c 6.00 6.53 7.52 8.98 9.99 11.20 13.12 – 16.42 19.35
PMIS 26.23 27.70 34.03 44.06 47.40 54.30 69.19 – 83.90 104.58
HMIS 5.35 11.47 15.13 20.04 21.15 24.19 32.79 – 41.85 60.12

PMIS-c1 10.23 12.36 16.12 21.12 21.31 24.26 35.00 – 41.48 56.58
PMIS-c2 30.53 32.08 36.39 47.31 51.73 58.78 72.63 – 87.92 108.02
CR-CLJP 74.59 57.26 68.58 85.47 91.17 104.01 117.27 – 136.43 154.46
CR-PMIS 29.05 27.61 31.72 45.01 46.76 52.62 69.18 – 75.09 80.39

Table C.34: Amount of work per digit-of-accuracy for the weakly scaled 3D 7-point Laplacian.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.14 1.37 1.66 1.83 2.12 2.61 – 3.46 –
CLJP 1.00 1.16 1.39 1.70 1.89 2.08 2.35 – 2.78 3.12

CLJP-c 1.00 1.09 1.25 1.50 1.67 1.87 2.19 – 2.74 3.23
PMIS 1.00 1.06 1.30 1.68 1.81 2.07 2.64 – 3.20 3.99
HMIS 1.00 2.15 2.83 3.75 3.95 4.52 6.13 – 7.82 11.24

PMIS-c1 1.00 1.21 1.58 2.06 2.08 2.37 3.42 – 4.05 5.53
PMIS-c2 1.00 1.05 1.19 1.55 1.69 1.93 2.38 – 2.88 3.54
CR-CLJP 1.00 0.77 0.92 1.15 1.22 1.39 1.57 – 1.83 2.07
CR-PMIS 1.00 0.95 1.09 1.55 1.61 1.81 2.38 – 2.59 2.77

Table C.35: Amount of work per digit-of-accuracy for the weakly scaled 3D 7-point Laplacian relative
to single processor WPDA.
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p 1 2 4 8 16 32 64 128 256 512

Falgout 0.04 0.06 0.08 0.10 0.12 0.14 0.18 – 0.23 –
CLJP 0.16 0.18 0.20 0.24 0.26 0.28 0.30 – 0.34 0.37

CLJP-c 0.05 0.06 0.08 0.10 0.12 0.14 0.18 – 0.23 0.27
PMIS 0.66 0.68 0.73 0.78 0.79 0.82∗ 0.85∗ – 0.88∗ 0.90∗

HMIS 0.09 0.32 0.42 0.52 0.54 0.58 0.67 – 0.73 0.81
PMIS-c1 0.29 0.36 0.45 0.55 0.55 0.59 0.69 – 0.73 0.80
PMIS-c2 0.74 0.75 0.77 0.82∗ 0.83∗ 0.85∗ 0.88∗ – 0.90∗ 0.92∗

CR-CLJP 0.28 0.17 0.20 0.24 0.25 0.28 0.30 – 0.34 0.37
CR-PMIS 0.69 0.68 0.71 0.79 0.79 0.81∗ 0.85∗ – 0.86∗ 0.87∗

Table C.36: Convergence factors for the weakly scaled 3D 7-point Laplacian. Asterisks (*) denote
trials that did not converge to a relative residual smaller than 10−8 within 100 iterations.

p 1 2 4 8 16 32 64 128 256 512

Falgout 3.17 4.68 7.19 9.95 13.18 20.24 34.51 – 98.19 –
CLJP 9.22 13.53 19.25 28.79 38.74 54.51 81.18 – 110.13 143.47

CLJP-c 3.21 4.68 6.28 8.63 11.21 15.59 23.98 – 49.65 112.19
PMIS 0.96 1.46 1.89 2.29 2.69 3.08 3.51 – 3.63 3.78
HMIS 1.81 2.82 3.72 4.64 5.50 6.35 7.22 – 7.32 7.46

PMIS-c1 1.86 2.89 3.83 4.81 5.83 6.98 8.36 – 11.30 15.15
PMIS-c2 1.11 1.49 1.81 2.17 2.53 3.00 3.66 – 6.09 9.35
CR-CLJP 15.62 20.32 26.42 37.60 48.05 65.30 94.76 – 124.20 157.94
CR-PMIS 1.96 2.50 2.89 3.35 3.77 4.21 4.63 – 4.93 5.14

Table C.37: Setup times in seconds for the weakly scaled 3D 7-point Laplacian.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.48 2.27 3.14 4.16 6.39 10.90 – 31.00 –
CLJP 1.00 1.47 2.09 3.12 4.20 5.91 8.80 – 11.94 15.55

CLJP-c 1.00 1.46 1.96 2.69 3.50 4.86 7.48 – 15.49 34.99
PMIS 1.00 1.51 1.96 2.38 2.79 3.20 3.64 – 3.77 3.93
HMIS 1.00 1.55 2.05 2.56 3.03 3.50 3.98 – 4.04 4.11

PMIS-c1 1.00 1.55 2.06 2.58 3.13 3.75 4.49 – 6.07 8.14
PMIS-c2 1.00 1.34 1.63 1.96 2.29 2.71 3.30 – 5.50 8.44
CR-CLJP 1.00 1.30 1.69 2.41 3.08 4.18 6.07 – 7.95 10.11
CR-PMIS 1.00 1.27 1.47 1.71 1.92 2.14 2.36 – 2.51 2.62

Table C.38: Setup times for the weakly scaled 3D 7-point Laplacian relative to single processor
setup times.
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C.4 Scaled 3D Unstructured Laplacian

This section reports the results for experiments on a weakly scaled 3D unstructured Laplacian

problem. The continuous problem is the same as Section C.2, except now the problem is scaled

to assign approximately the same number of unknowns to each processor for all trials. On one

processor the problem has approximately approximately 211,000 unknowns. On 512 processors

there is approximately 100 million unknowns, giving an average of 198,000 unknowns per processor.

The individual trials and problem size growth for each trial are listed in Table C.43.

The data is organized into the following tables.

Trial information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.43

Grid complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Table C.44

Relative grid complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.45

Operator complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.46

Relative operator complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.47

Amount of work per digit-of-accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Table C.48

Relative amount of work per digit-of-accuracy . . . . . . . . . . . . . . . . . . . . . . . . Table C.49

Convergence factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.50

Setup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.51

Relative setup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.52

Level-by-level degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . .Tables C.53 and C.54

Level-by-level nonzeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tables C.55 and C.56

p 1 2 4 8 16 32 64 128 256 512
Relative n 1.00 2.56 4.95 7.66 18.41 37.12 60.26 139.09 285.77 478.92

Table C.43: Trials and relative trial sizes for the weakly scaled 3D unstructured Laplacian. The
number of processors (p) is shown in the first row, and the number of unknowns (n) relative to the
number of unknowns in the smallest trial is shown in the second row.
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p 1 2 4 8 16 32 64 128 256 512

Falgout 1.84 1.84 2.00 2.02 1.84 2.01 2.02 1.78 1.97 1.97
CLJP 1.67 1.65 1.79 1.82 1.68 1.82 1.88 1.68 1.82 1.91

CLJP-c 1.66 1.66 1.81 1.83 1.68 1.83 1.88 1.66 1.82 1.87
PMIS 1.24 1.21 1.23 1.24 1.21 1.27 1.25 1.21 1.29 1.26
HMIS 1.25 1.23 1.25 1.27 1.23 1.28 1.30 1.25 1.31 1.33

PMIS-c1 1.24 1.21 1.23 1.24 1.21 1.27 1.25 1.21 1.29 1.28
PMIS-c2 1.23 1.21 1.23 1.24 1.21 1.27 1.25 1.21 1.29 1.25
CR-CLJP 1.68 1.66 1.80 1.82 1.68 1.82 1.88 1.68 1.82 1.91
CR-PMIS 1.23 1.21 1.23 1.24 1.21 1.27 1.25 1.21 1.29 1.26

Table C.44: Grid complexities for the weakly scaled 3D unstructured Laplacian.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.00 1.09 1.09 1.00 1.09 1.10 0.97 1.07 1.07
CLJP 1.00 0.99 1.07 1.08 1.00 1.09 1.12 1.00 1.09 1.14

CLJP-c 1.00 1.00 1.09 1.10 1.01 1.10 1.13 1.00 1.09 1.12
PMIS 1.00 0.98 1.00 1.00 0.98 1.03 1.01 0.98 1.04 1.02
HMIS 1.00 0.99 1.00 1.01 0.99 1.03 1.04 1.00 1.05 1.06

PMIS-c1 1.00 0.98 1.00 1.00 0.98 1.02 1.01 0.98 1.04 1.03
PMIS-c2 1.00 0.98 1.00 1.00 0.98 1.02 1.01 0.98 1.04 1.01
CR-CLJP 1.00 0.99 1.07 1.08 1.00 1.09 1.12 1.00 1.08 1.14
CR-PMIS 1.00 0.98 1.00 1.00 0.98 1.03 1.01 0.98 1.04 1.02

Table C.45: Grid complexities for the weakly scaled 3D unstructured Laplacian relative to the single
processor grid complexities.

p 1 2 4 8 16 32 64 128 256 512

Falgout 6.06 7.46 8.09 8.89 8.80 9.48 10.76 9.72 10.52 *
CLJP 4.70 5.71 6.71 7.01 6.77 7.77 8.58 7.63 8.70 9.72

CLJP-c 4.73 5.95 7.08 7.33 7.07 8.25 9.03 7.91 9.33 9.87
PMIS 1.47 1.52 1.47 1.47 1.46 1.53 1.49 1.44 1.60 1.52
HMIS 1.54 1.67 1.53 1.65 1.65 1.60 1.79 1.71 1.71 1.95

PMIS-c1 1.49 1.52 1.47 1.48 1.47 1.53 1.51 1.46 1.63 1.63
PMIS-c2 1.47 1.52 1.47 1.47 1.46 1.53 1.48 1.44 1.59 1.49
CR-CLJP 4.79 5.84 6.80 7.03 6.83 7.81 8.61 7.67 8.74 9.74
CR-PMIS 1.47 1.52 1.47 1.47 1.46 1.53 1.49 1.44 1.60 1.52

Table C.46: Operator complexities for the weakly scaled 3D unstructured Laplacian. The operator
complexity for Falgout on 512 processors was corrupted due to overflow.
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p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.23 1.33 1.47 1.45 1.56 1.78 1.60 1.74 *
CLJP 1.00 1.21 1.43 1.49 1.44 1.65 1.83 1.62 1.85 2.07

CLJP-c 1.00 1.26 1.50 1.55 1.49 1.74 1.91 1.67 1.97 2.09
PMIS 1.00 1.03 1.00 1.00 0.99 1.04 1.01 0.98 1.09 1.03
HMIS 1.00 1.09 1.00 1.07 1.07 1.04 1.16 1.11 1.12 1.27

PMIS-c1 1.00 1.02 0.99 0.99 0.99 1.03 1.02 0.98 1.10 1.09
PMIS-c2 1.00 1.03 1.00 1.00 0.99 1.04 1.00 0.97 1.08 1.01
CR-CLJP 1.00 1.22 1.42 1.47 1.43 1.63 1.80 1.60 1.83 2.03
CR-PMIS 1.00 1.03 1.00 1.00 0.99 1.04 1.01 0.98 1.09 1.03

Table C.47: Operator complexities for the weakly scaled 3D unstructured Laplacian relative to the
single processor operator complexities. The operator complexity for Falgout on 512 processors was
corrupted due to overflow.

p 1 2 4 8 16 32 64 128 256 512

Falgout 18.35 23.19 27.50 32.30 34.57 37.81 47.66 45.78 50.76 *
CLJP 14.19 17.78 23.36 25.48 25.89 30.82 36.22 34.19 38.81 47.18

CLJP-c 14.40 18.63 25.25 26.70 27.54 33.25 38.14 36.08 42.77 48.42
PMIS 17.81 24.59 28.15 30.77 41.24 41.61 44.37 51.80 68.05 67.59
HMIS 16.45 22.30 24.46 30.52 38.68 38.93 50.52 54.77 57.49 73.98

PMIS-c1 18.38 25.87 28.26 31.71 37.59 42.18 46.12 51.39 69.08 66.89
PMIS-c2 17.91 23.66 26.34 30.70 38.93 42.23 44.35 51.77 69.56 65.49
CR-CLJP 14.80 18.20 23.41 25.24 26.29 30.63 35.22 33.98 39.55 45.22
CR-PMIS 17.42 24.13 25.98 29.77 39.16 42.88 43.72 46.55 46.96 45.02

Table C.48: Amount of work per digit-of-accuracy for the weakly scaled 3D unstructured Laplacian.
Overflow corrupted the results for Falgout on 512 processors.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.26 1.50 1.76 1.88 2.06 2.60 2.50 2.77 *
CLJP 1.00 1.25 1.65 1.80 1.82 2.17 2.55 2.41 2.73 3.32

CLJP-c 1.00 1.29 1.75 1.85 1.91 2.31 2.65 2.50 2.97 3.36
PMIS 1.00 1.38 1.58 1.73 2.32 2.34 2.49 2.91 3.82 3.79
HMIS 1.00 1.36 1.49 1.86 2.35 2.37 3.07 3.33 3.49 4.50

PMIS-c1 1.00 1.41 1.54 1.72 2.05 2.29 2.51 2.80 3.76 3.64
PMIS-c2 1.00 1.32 1.47 1.71 2.17 2.36 2.48 2.89 3.88 3.66
CR-CLJP 1.00 1.23 1.58 1.71 1.78 2.07 2.38 2.30 2.67 3.06
CR-PMIS 1.00 1.38 1.49 1.71 2.25 2.46 2.51 2.67 2.70 2.58

Table C.49: Amount of work per digit-of-accuracy for the weakly scaled 3D unstructured Laplacian
relative to single processor WPDA. Overflow corrupted the results for Falgout on 512 processors.
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p 1 2 4 8 16 32 64 128 256 512

Falgout 0.22 0.23 0.26 0.28 0.31 0.32 0.35 0.38 0.39 0.41
CLJP 0.22 0.23 0.27 0.28 0.30 0.31 0.34 0.36 0.36 0.39

CLJP-c 0.22 0.23 0.27 0.28 0.31 0.32 0.34 0.36 0.37 0.39
PMIS 0.68 0.75 0.79 0.80 0.85∗ 0.84∗ 0.86∗ 0.88∗ 0.90∗ 0.90∗

HMIS 0.65 0.71 0.75 0.78 0.82 0.83 0.85∗ 0.87∗ 0.87∗ 0.89∗

PMIS-c1 0.69 0.76 0.79 0.81 0.84 0.85∗ 0.86∗ 0.88∗ 0.90∗ 0.89∗

PMIS-c2 0.68 0.74 0.77 0.80 0.84∗ 0.85∗ 0.86∗ 0.88∗ 0.90∗ 0.90∗

CR-CLJP 0.23 0.23 0.26 0.28 0.30 0.31 0.32 0.35 0.36 0.37
CR-PMIS 0.68 0.75 0.77 0.80 0.84∗ 0.85∗ 0.86∗ 0.87∗ 0.85∗ 0.86∗

Table C.50: Convergence factors for the weakly scaled 3D unstructured Laplacian. Asterisks (*)
denote trials that did not converge to a relative residual smaller than 10−8 within 100 iterations.

p 1 2 4 8 16 32 64 128 256 512

Falgout 9.46 25.16 35.14 36.00 63.73 88.95 100.92 137.89 187.93 267.50
CLJP 8.28 21.36 30.28 29.03 49.13 71.09 77.48 95.04 131.98 178.87

CLJP-c 8.87 22.49 32.29 31.35 52.15 79.39 88.46 112.90 162.60 208.55
PMIS 2.41 5.44 5.82 4.65 6.66 8.89 6.48 7.15 11.92 8.18
HMIS 2.72 6.14 6.30 5.70 8.19 9.28 9.19 8.83 11.92 13.66

PMIS-c1 2.81 6.01 6.42 5.16 7.55 10.14 8.40 10.38 18.34 20.09
PMIS-c2 3.03 6.40 6.77 5.38 7.93 10.40 8.11 10.47 18.35 17.61
CR-CLJP 13.42 30.14 40.20 37.73 59.86 85.06 89.81 109.22 151.11 191.76
CR-PMIS 4.15 8.37 8.63 6.92 9.46 11.84 9.00 9.93 15.11 11.69

Table C.51: Setup times in seconds for the weakly scaled 3D unstructured Laplacian.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 2.66 3.72 3.81 6.74 9.41 10.67 14.58 19.87 28.29
CLJP 1.00 2.58 3.66 3.51 5.94 8.59 9.36 11.49 15.95 21.61

CLJP-c 1.00 2.54 3.64 3.54 5.88 8.95 9.97 12.73 18.33 23.51
PMIS 1.00 2.26 2.42 1.93 2.77 3.69 2.69 2.97 4.96 3.40
HMIS 1.00 2.26 2.32 2.10 3.01 3.41 3.38 3.25 4.39 5.03

PMIS-c1 1.00 2.14 2.28 1.83 2.68 3.60 2.98 3.69 6.52 7.14
PMIS-c2 1.00 2.11 2.23 1.77 2.61 3.43 2.68 3.45 6.05 5.81
CR-CLJP 1.00 2.25 3.00 2.81 4.46 6.34 6.69 8.14 11.26 14.29
CR-PMIS 1.00 2.02 2.08 1.67 2.28 2.85 2.17 2.39 3.64 2.81

Table C.52: Setup times for the weakly scaled 3D unstructured Laplacian relative to single processor
setup times.
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C.5 3D Unstructured Anisotropic Problem

This section reports the results for experiments on a strongly scaled 7-point Laplacian problem. The

problem is defined as

−(0.01uxx + uyy + 0.0001uzz) = 0 on Ω (Ω = (0, 1)3), (C.2)

u = 0 on ∂Ω.

The sizes for this problem are identical to those in the 3D unstructured Laplacian in Section C.4. On

one processor the problem has approximately approximately 211,000 unknowns. On 512 processors

there is approximately 100 million unknowns, giving an average of 198,000 unknowns per processor.

The individual trials and problem size growth for each trial are listed in Table C.57.

The data is organized into the following tables.

Trial information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.57

Grid complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Table C.58

Relative grid complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.59

Operator complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.60

Relative operator complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.61

Amount of work per digit-of-accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Table C.62

Relative amount of work per digit-of-accuracy . . . . . . . . . . . . . . . . . . . . . . . . Table C.63

Convergence factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.64

Setup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.65

Relative setup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.66

Level-by-level degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . .Tables C.67 and C.68

Level-by-level nonzeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tables C.69 and C.70

p 1 2 4 8 16 32 64 128 256 512
Relative n 1.00 2.56 4.95 7.66 18.41 37.12 60.26 139.09 285.77 478.92

Table C.57: Trials and relative trial sizes for the weakly scaled 3D unstructured anisotropic problem.
The number of processors (p) is shown in the first row, and the number of unknowns (n) relative to
the number of unknowns in the smallest trial is shown in the second row.
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p 1 2 4 8 16 32 64 128 256 512

Falgout 1.86 2.06 2.06 2.00 2.05 2.02 1.90 1.94 1.93 1.80
CLJP 1.66 1.80 1.84 1.80 1.80 1.81 1.75 1.74 1.77 1.71

CLJP-c 1.66 1.81 1.84 1.80 1.81 1.82 1.76 1.75 1.77 1.70
PMIS 1.29 1.28 1.29 1.28 1.27 1.30 1.28 1.27 1.31 1.29
HMIS 1.30 1.29 1.31 1.30 1.29 1.32 1.31 1.28 1.34 1.32

PMIS-c1 1.29 1.28 1.29 1.28 1.27 1.30 1.29 1.27 1.32 1.30
PMIS-c2 1.29 1.28 1.29 1.28 1.27 1.30 1.28 1.26 1.31 1.29
CR-CLJP 1.66 1.80 1.84 1.80 1.80 1.81 1.75 1.74 1.77 1.71
CR-PMIS 1.29 1.28 1.23 1.28 1.27 1.24 1.28 1.26 1.24 1.29

Table C.58: Grid complexities for the weakly scaled 3D unstructured anisotropic problem.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.11 1.11 1.08 1.10 1.09 1.02 1.04 1.04 0.97
CLJP 1.00 1.09 1.11 1.08 1.09 1.09 1.06 1.05 1.07 1.03

CLJP-c 1.00 1.09 1.11 1.08 1.09 1.09 1.06 1.05 1.06 1.02
PMIS 1.00 0.99 1.00 0.99 0.98 1.01 1.00 0.98 1.02 1.00
HMIS 1.00 0.99 1.01 0.99 0.99 1.02 1.00 0.98 1.03 1.01

PMIS-c1 1.00 0.99 1.00 0.99 0.98 1.01 1.00 0.98 1.02 1.01
PMIS-c2 1.00 0.99 1.00 0.99 0.98 1.01 0.99 0.98 1.02 1.00
CR-CLJP 1.00 1.09 1.11 1.08 1.09 1.09 1.06 1.05 1.07 1.03
CR-PMIS 1.00 0.99 0.96 0.99 0.98 0.96 1.00 0.98 0.96 1.00

Table C.59: Grid complexities for the weakly scaled 3D unstructured anisotropic problem relative
to the single processor grid complexities.

p 1 2 4 8 16 32 64 128 256 512

Falgout 5.34 7.64 7.55 6.82 8.25 8.35 6.75 8.18 8.73 6.47
CLJP 3.88 5.63 5.88 5.35 6.14 6.39 5.46 6.03 6.58 5.44

CLJP-c 3.97 5.87 6.20 5.62 6.47 6.80 5.75 6.45 7.10 5.71
PMIS 1.64 1.68 1.68 1.53 1.62 1.72 1.51 1.59 1.76 1.51
HMIS 1.70 1.76 1.78 1.61 1.72 1.85 1.59 1.69 1.92 1.61

PMIS-c1 1.65 1.68 1.69 1.53 1.62 1.73 1.51 1.60 1.79 1.53
PMIS-c2 1.64 1.68 1.68 1.53 1.62 1.72 1.50 1.59 1.75 1.49
CR-CLJP 3.83 5.63 5.92 5.37 6.14 6.41 5.46 6.03 6.58 5.44
CR-PMIS 1.64 1.67 1.46 1.53 1.61 1.48 1.51 1.59 1.50 1.51

Table C.60: Operator complexities for the weakly scaled 3D unstructured anisotropic problem.
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p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.43 1.41 1.28 1.54 1.56 1.26 1.53 1.63 1.21
CLJP 1.00 1.45 1.52 1.38 1.58 1.65 1.41 1.55 1.70 1.40

CLJP-c 1.00 1.48 1.56 1.42 1.63 1.71 1.45 1.62 1.79 1.44
PMIS 1.00 1.02 1.02 0.93 0.98 1.05 0.92 0.97 1.07 0.92
HMIS 1.00 1.03 1.04 0.95 1.01 1.08 0.93 0.99 1.12 0.95

PMIS-c1 1.00 1.02 1.02 0.93 0.98 1.05 0.92 0.97 1.08 0.93
PMIS-c2 1.00 1.02 1.02 0.93 0.99 1.05 0.91 0.97 1.07 0.91
CR-CLJP 1.00 1.47 1.54 1.40 1.60 1.67 1.42 1.57 1.71 1.42
CR-PMIS 1.00 1.02 0.89 0.93 0.98 0.90 0.92 0.97 0.91 0.92

Table C.61: Operator complexities for the weakly scaled 3D unstructured anisotropic problem rela-
tive to the single processor operator complexities.

p 1 2 4 8 16 32 64 128 256 512

Falgout 97.59 168.11 162.04 186.59 291.42 280.15 269.25 365.18 467.90 383.69
CLJP 69.72 114.25 119.66 144.56 215.97 202.19 214.15 269.84 342.69 325.48

CLJP-c 73.73 124.92 127.75 151.74 225.46 218.11 227.33 288.52 374.08 335.50
PMIS 65.33 91.97 88.95 85.91 97.41 110.78 92.51 104.07 119.96 103.76
HMIS 66.33 89.28 93.14 82.08 102.94 116.04 97.61 107.79 127.01 110.66

PMIS-c1 67.96 91.30 92.42 79.90 97.85 110.53 92.49 104.08 121.28 105.08
PMIS-c2 66.19 89.59 88.42 80.85 97.90 110.57 91.44 103.25 121.31 102.99
CR-CLJP 67.97 115.50 120.27 144.42 215.70 202.53 214.86 270.08 342.88 325.38
CR-PMIS 65.69 92.40 159.16 81.51 96.67 154.32 92.13 100.77 156.19 113.77

Table C.62: Amount of work per digit-of-accuracy for the weakly scaled 3D unstructured anisotropic
problem.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.72 1.66 1.91 2.99 2.87 2.76 3.74 4.79 3.93
CLJP 1.00 1.64 1.72 2.07 3.10 2.90 3.07 3.87 4.91 4.67

CLJP-c 1.00 1.69 1.73 2.06 3.06 2.96 3.08 3.91 5.07 4.55
PMIS 1.00 1.41 1.36 1.32 1.49 1.70 1.42 1.59 1.84 1.59
HMIS 1.00 1.35 1.40 1.24 1.55 1.75 1.47 1.63 1.91 1.67

PMIS-c1 1.00 1.34 1.36 1.18 1.44 1.63 1.36 1.53 1.78 1.55
PMIS-c2 1.00 1.35 1.34 1.22 1.48 1.67 1.38 1.56 1.83 1.56
CR-CLJP 1.00 1.70 1.77 2.12 3.17 2.98 3.16 3.97 5.04 4.79
CR-PMIS 1.00 1.41 2.42 1.24 1.47 2.35 1.40 1.53 2.38 1.73

Table C.63: Amount of work per digit-of-accuracy for the weakly scaled 3D unstructured anisotropic
problem relative to single processor WPDA.
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p 1 2 4 8 16 32 64 128 256 512

Falgout 0.78 0.81 0.81 0.85 0.88∗ 0.87∗ 0.89∗ 0.90∗ 0.92∗ 0.93∗

CLJP 0.77 0.80 0.80 0.84 0.88∗ 0.86∗ 0.89∗ 0.90∗ 0.92∗ 0.93∗

CLJP-c 0.78 0.81 0.80 0.84 0.88∗ 0.87∗ 0.89∗ 0.90∗ 0.92∗ 0.92∗

PMIS 0.89∗ 0.92∗ 0.92∗ 0.92∗ 0.93∗ 0.93∗ 0.93∗ 0.93∗ 0.93∗ 0.94∗

HMIS 0.89∗ 0.91∗ 0.92∗ 0.91∗ 0.93∗ 0.93∗ 0.93∗ 0.93∗ 0.93∗ 0.94∗

PMIS-c1 0.89∗ 0.92∗ 0.92∗ 0.92∗ 0.93∗ 0.93∗ 0.93∗ 0.93∗ 0.93∗ 0.94∗

PMIS-c2 0.89∗ 0.92∗ 0.92∗ 0.92∗ 0.93∗ 0.93∗ 0.93∗ 0.93∗ 0.94∗ 0.94∗

CR-CLJP 0.77 0.80 0.80 0.84 0.88∗ 0.86∗ 0.89∗ 0.90∗ 0.92∗ 0.93∗

CR-PMIS 0.89∗ 0.92∗ 0.96∗ 0.92∗ 0.93∗ 0.96∗ 0.93∗ 0.93∗ 0.96∗ 0.94∗

Table C.64: Convergence factors for the weakly scaled 3D unstructured anisotropic problem. As-
terisks (*) denote trials that did not converge to a relative residual smaller than 10−8 within 100
iterations.

p 1 2 4 8 16 32 64 128 256 512

Falgout 7.11 22.02 31.93 24.57 51.04 60.36 46.60 73.46 101.38 80.90
CLJP 5.65 17.66 25.69 19.91 38.61 46.02 37.01 53.79 71.53 63.73

CLJP-c 6.24 18.85 27.11 21.52 41.90 51.28 42.59 63.27 90.80 85.00
PMIS 2.48 5.65 6.64 4.78 7.93 9.06 6.47 8.40 10.71 8.45
HMIS 2.74 6.10 7.15 5.11 8.66 9.86 7.10 8.86 11.76 9.77

PMIS-c1 2.87 6.24 7.22 5.28 8.72 10.36 8.11 11.60 17.16 18.88
PMIS-c2 3.06 6.54 7.47 5.44 9.04 10.55 8.17 11.85 17.16 18.25
CR-CLJP 9.83 25.51 34.36 26.56 47.40 56.23 44.25 62.81 82.49 71.32
CR-PMIS 4.68 8.68 8.41 7.45 10.83 10.18 9.01 11.40 11.70 11.33

Table C.65: Setup times in seconds for the weakly scaled 3D unstructured anisotropic problem.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 3.09 4.49 3.45 7.17 8.48 6.55 10.33 14.25 11.37
CLJP 1.00 3.12 4.55 3.52 6.83 8.14 6.55 9.52 12.66 11.28

CLJP-c 1.00 3.02 4.34 3.45 6.72 8.22 6.82 10.14 14.55 13.62
PMIS 1.00 2.27 2.67 1.92 3.19 3.65 2.61 3.38 4.31 3.40
HMIS 1.00 2.23 2.61 1.87 3.17 3.60 2.59 3.24 4.30 3.57

PMIS-c1 1.00 2.18 2.52 1.84 3.04 3.61 2.83 4.05 5.99 6.59
PMIS-c2 1.00 2.14 2.44 1.78 2.95 3.45 2.67 3.87 5.61 5.96
CR-CLJP 1.00 2.59 3.49 2.70 4.82 5.72 4.50 6.39 8.39 7.25
CR-PMIS 1.00 1.85 1.80 1.59 2.31 2.18 1.92 2.44 2.50 2.42

Table C.66: Setup times for the weakly scaled 3D unstructured anisotropic problem relative to single
processor setup times.
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C.6 3D Laplacian Holes

This section reports the results for experiments on a weakly scaled 3D unstructured Laplacian

problem on the domain shown in Figure 4.21. The continuous problem is the same as Section C.4,

and the problem is scaled to assign approximately the same number of unknowns to each processor

for all trials. On one processor the problem receives approximately 380,000 unknowns. On 512

processors the problem has about 167 million unknowns, giving an average of 327,000 unknowns per

processor. The individual trials and problem size growth for each trial are listed in Table C.71.

The data is organized into the following tables.

Trial information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.71

Grid complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Table C.72

Relative grid complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.73

Operator complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.74

Relative operator complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.75

Amount of work per digit-of-accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Table C.76

Relative amount of work per digit-of-accuracy . . . . . . . . . . . . . . . . . . . . . . . . Table C.77

Convergence factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.78

Setup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.79

Relative setup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C.80

Level-by-level degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . .Tables C.81 and C.82

Level-by-level nonzeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tables C.83 and C.84

p 1 2 4 8 16 32 64 512
Relative n 1.00 3.06 4.98 7.25 19.14 37.15 55.84 439.75

Table C.71: Trials and relative trial sizes for the weakly scaled 3D unstructured Laplacian on the
holes geometry. The number of processors (p) is shown in the first row, and the number of unknowns
(n) relative to the number of unknowns in the smallest trial is shown in the second row.
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p 1 2 4 8 16 32 64 128 256 512

Falgout 1.83 1.81 1.86 1.91 1.87 2.01 2.03 – – 2.04
CLJP 1.65 1.63 1.68 1.72 1.67 1.79 1.83 – – 1.91

CLJP-c 1.66 1.64 1.69 1.73 1.68 1.80 1.85 – – 1.91
PMIS 1.21 1.21 1.21 1.22 1.21 1.24 1.25 – – 1.26
HMIS 1.22 1.23 1.23 1.24 1.23 1.25 1.28 – – 1.31

PMIS-c1 1.21 1.21 1.21 1.22 1.21 1.24 1.25 – – 1.26
PMIS-c2 1.21 1.21 1.21 1.22 1.21 1.24 1.25 – – 1.26
CR-CLJP 1.64 1.63 1.68 1.72 1.67 1.79 1.83 – – 1.91
CR-PMIS 1.20 1.21 1.21 1.22 1.21 1.24 1.25 – – 1.26

Table C.72: Grid complexities for the weakly scaled 3D unstructured Laplacian on the holes geom-
etry.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 0.99 1.02 1.05 1.02 1.10 1.11 – – 1.11
CLJP 1.00 0.99 1.02 1.04 1.01 1.09 1.11 – – 1.16

CLJP-c 1.00 0.99 1.02 1.04 1.01 1.09 1.12 – – 1.16
PMIS 1.00 1.00 1.01 1.01 1.00 1.02 1.03 – – 1.04
HMIS 1.00 1.01 1.01 1.02 1.01 1.03 1.05 – – 1.08

PMIS-c1 1.00 1.00 1.01 1.01 1.01 1.02 1.03 – – 1.05
PMIS-c2 1.00 1.00 1.01 1.01 1.00 1.02 1.03 – – 1.04
CR-CLJP 1.00 0.99 1.02 1.05 1.02 1.09 1.11 – – 1.16
CR-PMIS 1.00 1.01 1.01 1.01 1.01 1.03 1.04 – – 1.05

Table C.73: Grid complexities for the weakly scaled 3D unstructured Laplacian on the holes geometry
relative to the single processor grid complexities.

p 1 2 4 8 16 32 64 128 256 512

Falgout 5.60 6.01 6.29 6.68 7.34 7.80 8.79 – – *
CLJP 4.33 4.68 4.96 5.16 5.61 6.44 6.96 – – *

CLJP-c 4.47 4.80 5.13 5.37 5.85 6.76 7.35 – – *
PMIS 1.43 1.47 1.45 1.45 1.52 1.48 1.50 – – 1.52
HMIS 1.49 1.55 1.52 1.55 1.63 1.54 1.68 – – 1.84

PMIS-c1 1.43 1.47 1.45 1.45 1.52 1.48 1.50 – – 1.55
PMIS-c2 1.43 1.47 1.44 1.45 1.52 1.48 1.50 – – 1.51
CR-CLJP 4.22 4.66 4.92 5.19 5.65 6.48 7.00 – – *
CR-PMIS 1.42 1.47 1.44 1.45 1.52 1.48 1.50 – – 1.52

Table C.74: Operator complexities for the weakly scaled 3D unstructured Laplacian on the holes
geometry. Operator complexities for Falgout, CLJP, CLJP-c, and CR-CLJP on 512 processors were
corrupted due to overflow.
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p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.07 1.12 1.19 1.31 1.39 1.57 – – *
CLJP 1.00 1.08 1.15 1.19 1.30 1.49 1.61 – – *

CLJP-c 1.00 1.07 1.15 1.20 1.31 1.51 1.64 – – *
PMIS 1.00 1.03 1.01 1.02 1.06 1.03 1.05 – – 1.06
HMIS 1.00 1.04 1.03 1.05 1.10 1.04 1.13 – – 1.24

PMIS-c1 1.00 1.03 1.01 1.02 1.06 1.04 1.05 – – 1.08
PMIS-c2 1.00 1.03 1.01 1.02 1.06 1.03 1.05 – – 1.05
CR-CLJP 1.00 1.10 1.17 1.23 1.34 1.54 1.66 – – *
CR-PMIS 1.00 1.03 1.02 1.02 1.07 1.04 1.05 – – 1.07

Table C.75: Operator complexities for the weakly scaled 3D unstructured Laplacian on the holes
geometry relative to the single processor operator complexities. Operator complexities for Falgout,
CLJP, CLJP-c, and CR-CLJP on 512 processors were corrupted due to overflow.

p 1 2 4 8 16 32 64 128 256 512

Falgout 11.60 15.09 15.85 17.59 21.72 24.91 30.00 – – *
CLJP 9.02 11.82 12.77 13.89 16.83 21.13 23.96 – – *

CLJP-c 9.36 12.18 13.22 14.54 17.68 22.33 25.45 – – *
PMIS 8.71 14.33 14.86 17.75 26.19 30.17 28.37 – – 41.83
HMIS 8.73 13.00 13.11 15.91 20.41 23.20 27.77 – – 46.79

PMIS-c1 8.64 15.06 15.62 17.47 26.16 25.32 28.69 – – 42.95
PMIS-c2 8.71 14.61 14.87 17.92 23.04 25.92 28.40 – – 41.31
CR-CLJP 14.81 25.42 38.07 32.09 35.70 45.54 41.80 – – *
CR-PMIS 12.24 18.80 23.08 28.78 28.81 37.44 45.21 – – 44.73

Table C.76: Amount of work per digit-of-accuracy for the weakly scaled 3D unstructured Laplacian
on the holes geometry. Overflow on 512 processors for the Falgout, CLJP, CLJP-c, and CR-CLJP
tests corrupted the WPDA results.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 1.30 1.37 1.52 1.87 2.15 2.59 – – *
CLJP 1.00 1.31 1.42 1.54 1.87 2.34 2.66 – – *

CLJP-c 1.00 1.30 1.41 1.55 1.89 2.39 2.72 – – *
PMIS 1.00 1.65 1.71 2.04 3.01 3.46 3.26 – – 4.80
HMIS 1.00 1.49 1.50 1.82 2.34 2.66 3.18 – – 5.36

PMIS-c1 1.00 1.74 1.81 2.02 3.03 2.93 3.32 – – 4.97
PMIS-c2 1.00 1.68 1.71 2.06 2.64 2.98 3.26 – – 4.74
CR-CLJP 1.00 1.72 2.57 2.17 2.41 3.08 2.82 – – *
CR-PMIS 1.00 1.54 1.89 2.35 2.35 3.06 3.69 – – 3.65

Table C.77: Amount of work per digit-of-accuracy for the weakly scaled 3D unstructured Laplacian
on the holes geometry relative to single processor WPDA. Overflow on 512 processors for the Falgout,
CLJP, CLJP-c, and CR-CLJP tests corrupted the WPDA results.
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p 1 2 4 8 16 32 64 128 256 512

Falgout 0.11 0.16 0.16 0.17 0.21 0.24 0.26 – – 0.33
CLJP 0.11 0.16 0.17 0.18 0.22 0.25 0.26 – – 0.32

CLJP-c 0.11 0.16 0.17 0.18 0.22 0.25 0.26 – – 0.32
PMIS 0.47 0.62 0.64 0.69 0.77 0.80 0.78 – – 0.85∗

HMIS 0.46 0.58 0.59 0.64 0.69 0.74 0.76 – – 0.83∗

PMIS-c1 0.47 0.64 0.65 0.68 0.77 0.76 0.79 – – 0.85∗

PMIS-c2 0.47 0.63 0.64 0.69 0.74 0.77 0.78 – – 0.85∗

CR-CLJP 0.28 0.43 0.56 0.48 0.48 0.52 0.46 – – 0.40
CR-PMIS 0.59 0.70 0.75 0.79 0.78 0.83∗ 0.86∗ – – 0.86∗

Table C.78: Convergence factors for the weakly scaled 3D unstructured Laplacian on the holes
geometry. Asterisks (*) denote trials that did not converge to a relative residual smaller than 10−8

within 100 iterations.

p 1 2 4 8 16 32 64 128 256 512

Falgout 16.55 48.04 41.61 34.80 60.41 73.79 67.71 – – 134.37
CLJP 15.03 43.67 36.68 29.24 48.42 63.66 56.67 – – 108.49

CLJP-c 16.24 46.08 39.00 31.39 52.45 68.77 62.50 – – 140.14
PMIS 4.81 13.80 10.23 7.44 14.07 13.12 10.68 – – 13.05
HMIS 5.44 15.65 11.47 8.46 14.07 14.13 12.50 – – 16.76

PMIS-c1 5.59 15.36 11.41 8.41 14.27 15.09 13.25 – – 29.55
PMIS-c2 6.04 16.47 12.07 8.87 14.99 15.86 13.80 – – 29.47
CR-CLJP 21.92 60.40 49.60 40.19 65.57 80.75 71.45 – – 136.87
CR-PMIS 8.38 22.14 15.80 11.68 19.12 18.78 15.04 – – 19.18

Table C.79: Setup times in seconds for the weakly scaled 3D unstructured Laplacian on the holes
geometry.

p 1 2 4 8 16 32 64 128 256 512

Falgout 1.00 2.90 2.51 2.10 3.65 4.46 4.09 – – 8.12
CLJP 1.00 2.90 2.44 1.95 3.22 4.23 3.77 – – 7.22

CLJP-c 1.00 2.84 2.40 1.93 3.23 4.23 3.85 – – 8.63
PMIS 1.00 2.87 2.13 1.55 2.93 2.73 2.22 – – 2.71
HMIS 1.00 2.88 2.11 1.56 2.59 2.60 2.30 – – 3.08

PMIS-c1 1.00 2.75 2.04 1.51 2.55 2.70 2.37 – – 5.29
PMIS-c2 1.00 2.73 2.00 1.47 2.48 2.63 2.29 – – 4.88
CR-CLJP 1.00 2.76 2.26 1.83 2.99 3.68 3.26 – – 6.24
CR-PMIS 1.00 2.64 1.89 1.39 2.28 2.24 1.79 – – 2.29

Table C.80: Setup times for the weakly scaled 3D unstructured Laplacian on the holes geometry
relative to single processor setup times.
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